首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets.  相似文献   

2.
3.
4.
5.
6.
无透镜显微成像(lens-free microscopy)是一种在不借助透镜的情况下进行成像的技术。它基于Gabor同轴全息原理,利用面阵探测器采集原始全息图,随后通过数字图像处理技术重建样本,从而实现数字显微成像。像素超分辨技术缩小了等效像素,提供更多细节信息使得再现像的分辨率得以直接提升,而且多种相位恢复手段通过去除孪生像也达到了间接提高分辨率的目的,尤其是对密集样本。无透镜显微成像技术突破了传统光学显微镜由透镜带来的空间带宽积的限制,实现了大视野范围下的高分辨率成像,因此,这一技术能够提供大视场下的临床样本快速诊断和准确检测。另外,新兴的算法和硬件都在不断地加快数据采集和计算速度,扩展了其在高速运动样本和纳米尺度样本上的应用。最近无透镜技术和其配套硬件设备发展方向趋向于硬件紧凑、算法密集、实时、三维、彩色、高分辨率的便携式分立器件或配件。  相似文献   

7.
8.
9.
The recently developed correlative super-resolution fluorescence microscopy (SRM) and electron microscopy (EM) is a hybrid technique that simultaneously obtains the spatial locations of specific molecules with SRM and the context of the cellular ultrastructure by EM. Although the combination of SRM and EM remains challenging owing to the incompatibility of samples prepared for these techniques, the increasing research attention on these methods has led to drastic improvements in their performances and resulted in wide applications. Here, we review the development of correlative SRM and EM (sCLEM) with a focus on the correlation of EM with different SRM techniques. We discuss the limitations of the integration of these two microscopy techniques and how these challenges can be addressed to improve the quality of correlative images. Finally, we address possible future improvements and advances in the continued development and wide application of sCLEM approaches.  相似文献   

10.
Traction force microscopy (TFM) is a quantitative technique for measuring cellular traction force, which is important in understanding cellular mechanotransduction processes. Traditional TFM has a significant limitation in that it has a low measurement throughput, commonly one per TFM dish, due to a lack of cell position information. To obtain enough cellular traction force data, an onerous workload is required including numerous TFM dish preparations and heavy cell-seeding activities, creating further difficulty in achieving identical experimental conditions among batches. In this paper, we present an improved-throughput TFM method using the well-developed microcontact printing technique and chemical modifications of linking microbeads to the gel surface to address these limitations. Chemically linking the microbeads to the gel surface has no significant influence on cell proliferation, morphology, cytoskeleton, and adhesion. Multiple pairs of force loaded and null force fluorescence images can be easily acquired by means of manual microscope with the aid of a fluorescence micropattern made by microcontact printing. Furthermore, keeping the micropattern separate from cells by using gels effectively eliminates the potential negative effect of the micropattern on the cells. This novel design greatly improves the analysis throughput of traditional TFM from one to at least twenty cells per petri dish without losing unique advantages, including a high spatial resolution of traction measurements. This newly developed method will boost the investigation of cell-matrix mechanical interactions.  相似文献   

11.
内窥式共焦显微术是将共焦显微术和光纤技术结合起来的新技术,既具有共焦显微术的独特优点:高分辨率和三维成像;又能对体内器官组织进行在体成像.分析共焦成像的原理,阐述了内窥式共焦成像系统,详细讨论其研究进展以及我们的研究结果,并分析了其优点及在生物医学领域的应用.  相似文献   

12.
Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology. Moreover, our striped-illumination approach is able to improve the resolution of any laser-scanning-microscope, including confocal microscopes, by simply choosing an appropriate detector.  相似文献   

13.
14.
The coupling of cryo-light microscopy (cryo-LM) and cryo-electron microscopy (cryo-EM) poses a number of advantages for understanding cellular dynamics and ultrastructure. First, cells can be imaged in a near native environment for both techniques. Second, due to the vitrification process, samples are preserved by rapid physical immobilization rather than slow chemical fixation. Third, imaging the same sample with both cryo-LM and cryo-EM provides correlation of data from a single cell, rather than a comparison of "representative samples". While these benefits are well known from prior studies, the widespread use of correlative cryo-LM and cryo-EM remains limited due to the expense and complexity of buying or building a suitable cryogenic light microscopy stage. Here we demonstrate the assembly, and use of an inexpensive cryogenic stage that can be fabricated in any lab for less than $40 with parts found at local hardware and grocery stores. This cryo-LM stage is designed for use with reflected light microscopes that are fitted with long working distance air objectives. For correlative cryo-LM and cryo-EM studies, we adapt the use of carbon coated standard 3-mm cryo-EM grids as specimen supports. After adsorbing the sample to the grid, previously established protocols for vitrifying the sample and transferring/handling the grid are followed to permit multi-technique imaging. As a result, this setup allows any laboratory with a reflected light microscope to have access to direct correlative imaging of frozen hydrated samples.  相似文献   

15.
Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated 1-3. However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated 4-7. However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot 8-10. We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.  相似文献   

16.
应用光镜和透射电镜技术研究山羊精子发生不同阶段各级生精细胞显微、超微结构及山羊精子分化成熟过程。结果表明:山羊精子发生经历了精原细胞、初级精母细胞、次级精母细胞、精子细胞及变态精子阶段发育成成熟的精子。精原细胞期核呈椭圆形,染色质凝集成团分布于核质中,线粒体开始出现;精母细胞期有高尔基体分布;精子细胞经过核质浓缩、线粒体迁移等过程发育成成熟精子,成熟的山羊精子头部细长,核质高度浓缩,中段膨大,线粒体丰富。线粒体、中心粒对精子变态发生起重要作用,同时观察到头部与中段脱落的畸形精子。  相似文献   

17.
Tissue processed for scanning electron microscopy by ethanol-cryofracturing combined with critical point drying was embedded and sectioned for transmission electron microscopy. Study of sections cut in a plane passing through the fracture edge indicated that preservation of cellular fine structure of fractured cells was excellent. Even at the most peripheral edge of the fracture there was no evidence that movement of cytoplasmic components occurred to distort the original structural organization of fractured cells. Lack of cytoplasmic detail in ethanol-cryofractographs has been due more to the nature of the fracturing of the tissue and to the obscuring effects of the metal coating than to structural deformation at the fracture edge or to limitations in resolving power of the scanning electron microscope used.  相似文献   

18.
The function and use of the phase microscope is described for controlling the contrast in the image and making visible unstained, living microorganisms and cytological details within them. The miscroscope may be used to examine unstained, growing cultures in Petri dishes, even with the oil immersion lens. Flagella are shown on the living spore of Ashbya. Since microorganisms show sharp edges under the phase microscope, measurement of unstained living cells is now possible. B. megatherium was found to average 1.0μ in width and B. cereus 1.1 μ in width with very small variation. Observations on locomotion are like those reported by Pijper. Stained preparations of low contrast may be seen with considerably enhanced contrast by phase microscopy.  相似文献   

19.
High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field.  相似文献   

20.
High-resolution microscopy methods based on different nonlinear optical (NLO) contrast mechanisms are finding numerous applications in biology and medicine. While the basic implementations of these microscopy methods are relatively mature, an important direction of continuing technological innovation lies in improving the throughput of these systems. Throughput improvement is expected to be important for studying fast kinetic processes, for enabling clinical diagnosis and treatment, and for extending the field of image informatics. This review will provide an overview of the fundamental limitations on NLO microscopy throughput. We will further cover several important classes of high-throughput NLO microscope designs with discussions on their strengths and weaknesses and their key biomedical applications. Finally, this review will close with a perspective of potential future technological improvements in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号