首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Effect of dam methylation on Tn5 transposition   总被引:27,自引:0,他引:27  
  相似文献   

3.
IS10 transposition is regulated by DNA adenine methylation   总被引:64,自引:0,他引:64  
We show that dam- mutants are a major class of E. coli mutants with increased IS10 activity. IS10 has two dam methylation sites, one within the transposase promoter and one within the inner terminus where transposase presumably binds. Absence of methylation results in increased activity of both promoter and terminus, and completely accounts for increased transposition in dam- strains. Transposition of Tn903 and Tn5 are also increased in dam- strains, probably for analogous reasons. Transposition is also increased when IS10 is hemimethylated. One hemimethylated species is much more active than the other and is estimated to be at least 1000 times more active than a fully methylated element. Evidence is presented that the promoter and inner terminus of IS10 are coordinately activated in a dam-dependent fashion, presumably because they are hemimethylated at the same time. Thus, in dam+ strains, IS10 will transpose preferentially when DNA is hemimethylated. We suggest specifically that IS10 transposition may preferentially occur immediately after passage of a chromosomal replication fork.  相似文献   

4.
Three promoters near the termini of IS10: pIN, pOUT, and pIII   总被引:36,自引:0,他引:36  
  相似文献   

5.
6.
C. T. Kuan  S. K. Liu    I. Tessman 《Genetics》1991,128(1):45-57
Excision and transposition of the Tn5 element in Escherichia coli ordinarily appear to occur by recA-independent mechanisms. However, recA(Prtc) genes, which encode RecA proteins that are constitutively activated to the protease state, greatly enhanced excision and transposition; both events appeared to occur concomitantly and without destruction of the donor DNA. The recombinase function of the RecA protein was not required. Transposition was accompanied by partial, and occasionally full, restoration of the functional integrity of the gene vacated by the excised Tn5. The stimulation of transposition was inhibited by an uncleavable LexA protein and was strongly enhanced by an additional role of the RecA(Prtc) protein besides its mediation of LexA cleavage. To account for the enhanced transposition, we suggest that (i) there may be a LexA binding site within the promoter for the IS50 transposase, (ii) activated RecA may cleave the IS50 transposition inhibitor, and (iii) the transposase may be formed by RecA cleavage of a precursor molecule.  相似文献   

7.
8.
插入序列(insertion sequence, IS)是细菌中最简单的移动遗传因子,由两端的反向重复序列(inverted repeats, IR)和中间的转座酶 (transposase)编码序列组成。在细菌中,因为插入序列的转座酶催化活性中心氨基酸序列不同,所以将其转座酶分为DDE转座酶、DEDD转座酶、HUH转座酶和丝氨酸转座酶。在转座过程中,根据插入序列是否有复制,将插入序列的转座分为复制型转座(replicative -ansposition)和非复制型转座(non-replicative transposition),而将形成夏皮罗中间体(Shapiro intermediate)的非复制型转座称为保守型转座(conservative transposition)。此外,插入序列通过不同的转座机制插入到基因编码区导致基因突变、缺失和倒置;或者插入到基因上游,通过自身启动子或与基因形成杂交启动子来影响插入序列下游基因的表达,从而帮助细菌抵抗复杂的环境变化。本文主要围绕细菌插入序列的特征、转座酶、转座机制和转座影响展开综述,以期为进一步研究插入序列的机制和插入序列在细菌中所起的作用提供参考。  相似文献   

9.
Temporal control of transposition in Tn5.   总被引:10,自引:6,他引:4       下载免费PDF全文
  相似文献   

10.
The LexA protein of Escherichia coli represses expression of a variety of genes that, by definition, constitute the SOS regulon. Genetic evidence suggests that Tn5 transposition is also regulated by the product of the lexA gene (C.-T. Kuan, S.-K. Liu, and I. Tessman, Genetics 128:45-57, 1991). We now show that the LexA protein represses expression of the tnp gene, located in the IS50R component of Tn5, which encodes a transposase, and that LexA does not repress expression of the IS50R inh gene, which encodes an inhibitor of transposition. Elimination of LexA resulted in increased expression of the tnp gene by a factor of 2.7 +/- 0.4, as indicated by the activity of a lacZ gene fused to the tnp gene. LexA protein retarded the electrophoretic movement of a 101-bp segment of IS50R DNA that contained a putative LexA protein-binding site in the tnp promoter; the interaction between the LexA repressor and the promoter region of the tnp gene appears to be relatively weak. These features show that the IS50R tnp gene is a member of the SOS regulon.  相似文献   

11.
12.
Transposon Tn10 is a composite element in which two individual insertion sequence (IS)-like sequences cooperate to mediate transposition of the intervening material. The two flanking IS10 elements are not identical; IS10-right is responsible for functions required to promote transposition, and IS10-left is defective in transposition functions. We suggest that the two IS10 elements were originally identical in sequence and have subsequently diverged. IS10-right is compactly organized with structural gene(s), promoters, and sites important for transposition and (presumably) its regulation all closely linked and, in some cases, overlapping. IS10 has a single major coding region that almost certainly encodes an essential transposition function. A pair of opposing promoters flank the start of this coding region. One of these promoters is responsible for expression in vivo of transposon-encoded transposition functions. We propose that the second promoter is involved in modulation of Tn10 transposition. Genetic analysis suggests that transposon-encoded function(s) may be preferentially cis-acting. Insertion of Tn10 into particular preferred target sites is due primarily to the occurrence of a particular six-base pair target DNA sequence. The properties of this sequence suggest that symmetrically disposed subunits of a single protein may be responsible for both recognition and cleavage of target DNA during insertion.  相似文献   

13.
dnaA, an essential host gene, and Tn5 transposition.   总被引:14,自引:8,他引:6       下载免费PDF全文
Mutations in dnaA, an essential gene in Escherichia coli, decrease the frequency of transposition of Tn5. An insertion mutation in the dnaA gene does not affect Tn5 gene expression. Therefore, the DnaA protein plays a role either in the transposition reaction itself or in some type of cellular regulation of transposition. Analysis of a mutation in the DnaA box, found at the outside end of IS50, is consistent with a direct interaction of the protein through these bases. IS50 transposition, which utilizes only one end containing a DnaA box, is not affected by dnaA mutations. Overproduction of the DnaA protein does not increase transposition frequencies in wild-type cells, even when the transposase is also overproduced.  相似文献   

14.
15.
Role of the IS50 R proteins in the promotion and control of Tn5 transposition   总被引:19,自引:0,他引:19  
IS50R, the inverted repeat sequence of Tn5 which is responsible for supplying functions that promote and control Tn5 transposition, encodes two polypeptides that differ at their N terminus. Frameshift, in-frame deletion, nonsense, and missense mutations within the N terminus of protein 1 (which is not present in protein 2) were isolated and characterized. The properties of these mutations demonstrate that protein 1 is absolutely required for Tn5 transposition. None of these mutations affected the inhibitory activity of IS50, confirming that protein 2 is sufficient to mediate inhibition of Tn5 transposition. The effects on transposition of increasing the amount of protein 2 (the inhibitor) relative to protein 1 (the transposase) were also analyzed. Relatively large amounts of protein 2 were required to see a significant decrease in the transposition frequency of an element. In addition, varying the co-ordinate synthesis of the IS50 R proteins over a 30-fold range had little effect on the transposition frequency. These studies suggest that neither the wild-type synthesis rate of protein 2 relative to protein 1 nor the amount of synthesis of both IS50 R proteins is the only factor responsible for controlling the transposition frequency of a wild-type Tn5 element in Escherichia coli.  相似文献   

16.
The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.  相似文献   

17.
18.
M P Krebs  W S Reznikoff 《Gene》1988,63(2):277-285
We constructed a derivative of Tn5, Tn5 ORFlac, that is capable of creating lacZ translational fusions upon transposition. Lac- strains carrying this construct formed red papillae when plated on MacConkey-lactose media. Lac+ cells isolated from independent papillae expressed distinct beta-galactosidase fusion proteins, suggesting that the Lac+ phenotype resulted from transposition. In support of this, analysis of plasmids carrying Tn5 ORFlac prepared from these cells indicated that the Lac+ phenotypes arose as a result of intermolecular rearrangements. Furthermore, a derivative of Tn5 ORFlac that contains an ochre mutation in the transposase gene formed papillae only in a supB strain. Tn5 ORFlac is useful for obtaining mutants that affect Tn5 transposition and for creating lacZ fusions. We used the papillation phenotype to isolate a spontaneous revertant of IS50L that promotes transposition at a 3.6-fold higher rate than IS50R. The mutation altered the amino acid sequence of both transposase and inhibitor.  相似文献   

19.
Transcriptional control of IS1 transposition in Escherichia coli   总被引:5,自引:0,他引:5  
  相似文献   

20.
Tn10 transposition and circle formation in vitro   总被引:45,自引:0,他引:45  
D Morisato  N Kleckner 《Cell》1987,51(1):101-111
We describe a cell-free system that promotes Tn10 transposition and transposon circle formation, a related intramolecular event. Tn10 circle formation in vitro has been characterized in detail, and is shown to require a supercoiled substrate and to proceed in the absence of ATP. The reaction requires Tn10 transposase protein, and either of two E. coli proteins, integration host factor (IHF) and HU, which are small DNA binding proteins that change the conformation of DNA. Tn10 is composed of inverted repeats of insertion sequence IS10. Pair-wise combinations of the IS10 "outside" and "inside" ends mediate distinct classes of rearrangements in vivo, and they exhibit different reaction requirements in vitro. In contrast to the Tn10 reaction, which involves two outside ends, circle formation with two inside ends proceeds with a transposase fraction alone, in the absence of added host factors, and is inhibited by methylation of the dam site within each terminus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号