首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During chemically induced differentiation of Friend virus-infected mouse erythroleukemia (MEL) cell lines, there is a biphasic down-regulation of the c-myb proto-oncogene. A plasmid containing a murine c-myb cDNA controlled by a mouse metallothionein I promoter was transfected into the C19 MEL cell line. For six transfected clones, it was found that expression of the exogenous c-myb mRNA could be up-regulated by the addition of 120 microM ZnCl2 and that the N,N'-hexamethylenebisacetamide-induced differentiation of these transfectants was inhibited in proportion to the level of exogenous c-myb mRNA expression. By adding or removing ZnCl2 at different times during the induction process, it was possible to show that up-regulation of exogenous c-myb limited to the first 2 days of induction had little or no effect on differentiation. In contrast, continuous expression of exogenous c-myb beginning at any time during the period of induction blocked further differentiation. These results suggest that during HMBA induction of MEL cells, the early down-regulation of c-myb mRNA is not necessary for terminal differentiation, whereas the down-regulation of c-myb at a later time is necessary.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on DNA fragmentation, altered expression of the heat shock protein (hsp) 70 gene, and protooncogenes c-myc and c-myb was studied during chemical induction of erythroid differentiation in K562 cells. Preincubation of K562 cells with 1,25(OH)2D3 did not alter the concentration of hemoglobin in cells which did differentiate, but led to a reduction in the accumulation of low molecular weight DNA generated by Ara-C administration. The extent of this reduction was similar to the degree of inhibition of hemoglobin formation in the culture as the whole. Preincubation with 1,25(OH)2D3 had no effect on the increase of hsp 70 gene expression induced by a 48-hr treatment with Ara-C, but prevented the Ara-C-induced down-regulation of the protooncogene c-myc. The protooncogene c-myb was down-regulated after 15 min of treatment with Ara-C, and exposure to 1,25(OH)2D3 prior to Ara-C caused a further down-regulation of its expression. The data suggest that the events associated with erythroid differentiation may be separable into at least two groups; one of these may have an influence on the kinetics of the cell cycle traverse, and the other may be related to the expression of the erythroid phenotype.  相似文献   

9.
10.
Cell numbers are regulated by a balance among proliferation, growth arrest, and programmed cell death. A profound example of cell homeostasis, controlled throughout life, is the complex process of blood cell development, yet little is understood about the intracellular mechanisms that regulate blood cell growth arrest and programmed cell death. In this work, using transforming growth factor beta 1 (TGF beta 1)-treated M1 myeloid leukemia cells and genetically engineered M1 cell variants, the regulation of growth arrest and apoptosis was dissected. Blocking of early expression of MyD118, a novel differentiation primary response gene also shown to be a primary response gene induced by TGF beta 1, delayed TGF beta 1-induced apoptosis, demonstrating that MyD118 is a positive modulator of TGF beta 1-mediated cell death. Elevated expression of bcl-2 blocked the TGF beta 1-induced apoptotic pathway but not growth arrest induced by TGF beta 1. Deregulated expression of either c-myc or c-myb inhibited growth arrest and accelerated apoptosis, demonstrating for the first time that c-myb plays a role in regulating apoptosis. In all cases, the apoptotic response was correlated with the level of MyD118 expression. Taken together, these findings demonstrate that the primary response gene MyD118 and the c-myc, c-myb, and bcl-2 proto-oncogenes interact to modulate growth arrest and apoptosis of myeloid cells.  相似文献   

11.
12.
c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.  相似文献   

13.
14.
The presence of the lpr/lpr genotype on a number of murine genetic backgrounds results in a systemic lupus erythematosus-like disease and lymphadenopathy. The T lymphocytes of these mice exhibit a variety of abnormalities; most pertinent to the present report is an abnormally high level of c-myb proto-oncogene mRNA. Since the c-myb protein is presumably the effector molecule that affects cellular functions, it is important to determine whether increased levels of this c-myb protein are produced. With the use of immunoprecipitation with an anti-v-myb reagent, we found high levels of c-myb protein in the lymph nodes of lpr mice. Detailed analysis showed that the c-myb protein is primarily expressed by an abnormal T lymphocyte population that does not express the mature T cell markers, L3T4 and Lyt-2. Analysis by two-dimensional gel electrophoresis showed that the c-myb proteins from normal thymocytes and from these L3T4-, Lyt-2-T cells are indistinguishable. DNA analysis with Southern hybridizations showed the lack of amplification, insertions, deletions, and rearrangements, which is in accord with results from the protein studies. Most interestingly, the c-myb gene in lpr L3T4-, Lyt-2- T cells is hypomethylated compared with normal controls. This suggests that a regulatory mechanism, rather than the structural alteration of the gene, is responsible for elevated expression of c-myb in these L3T4-, Lyt-2- cells.  相似文献   

15.
We have sublocalized the human proto-oncogene c-myb by applying two different techniques: in situ hybridization of metaphase spreads and chromosome spot hybridization of flow-sorted chromosomes. For this we used a teratocarcinoma cell line carrying specific chromosome translocations involving the two chromosomes 6 and one chromosome 11. The distribution of the c-myb gene copies on the different translocation chromosomes revealed that c-myb is located in the region 6q21----q23. Because of the close proximity of the c-myb locus to the chromosomal breakpoints in the teratocarcinoma, we investigated whether c-myb was implicated in the development of this tumor. No rearrangement, deletion, or amplification of the gene was detected in the teratocarcinoma cells. Furthermore, the level of c-myb expression was comparable to that of other cell lines of nonhematopoietic origin. These results suggest that c-myb was not affected by the translocation and played no significant role in the development of this teratocarcinoma.  相似文献   

16.
17.
18.
Interleukin-6 (IL-6) and leukemia inhibitory factor (LIF), two multifunctional cytokines, recently have been identified as physiological inducers of hematopoietic cell differentiation which also induce terminal differentiation and growth arrest of the myeloblastic leukemic M1 cell line. In this work, it is shown that c-myc exhibited a unique pattern of expression upon induction of M1 terminal differentiation by LIF or IL-6, with an early transient increase followed by a decrease to control levels by 12 h and no detectable c-myc mRNA by 1 day; in contrast, c-myb expression was rapidly suppressed, with no detectable c-myb mRNA by 12 h. Vectors containing the c-myc gene under control of the beta-actin gene promoter were transfected into M1 cells to obtain M1myc cell lines which constitutively synthesized c-myc. Deregulated and continued expression of c-myc blocked terminal differentiation induced by IL-6 or LIF at an intermediate stage in the progression from immature blasts to mature macrophages, precisely at the point in time when c-myc is normally suppressed, leading to intermediate-stage myeloid cells which continued to proliferate in the absence of c-myb expression.  相似文献   

19.
The expression of c-myb mRNA is differentially regulated in murine B lymphoid tumors such that B cell lymphomas and plasmacytomas contain significantly less c-myb mRNA than pre-B cell lymphomas. To examine the low level of c-myb mRNA expression in the murine B cell lymphoma cell line BCL1, nonessential amino acid starvation was used to block these cells in a G1 state. When BCL1 cells were released from this block, a 7- to 10-fold increase in c-myb mRNA was detected in late G1 and S phase cells relative to that detected in exponentially growing BCL1 cells. This increase was not inhibited by aphidicolin. To determine whether cell cycle regulation of c-myb mRNA expression occurred during exponential growth in both murine pre-B cell lymphoma and B cell lymphoma cell lines, elutriation was used to separate exponentially growing cell populations. An increase in c-myb mRNA expression was seen in late G1 and S phase fractions from B cell lymphoma cell lines. In contrast, c-myb mRNA levels remained constant in elutriation fractions isolated from pre-B cell lymphoma cell lines. Expression of c-myb mRNA was not detected in exponentially growing or in Go serum-stimulated murine fibroblasts. These results indicate that constitutive vs cell cycle regulation of c-myb mRNA expression is related to the state of differentiation in murine B lymphoid tumors and suggest that a switch in regulation may occur during normal B cell development.  相似文献   

20.
c-myb转录因子与细胞增殖分化   总被引:1,自引:0,他引:1  
c-myb基因是细胞内一种原癌基因,它表达c-myb转录因子,作用于相应靶基因,调节细胞的增殖、分化。它与造血调控密切相关,同时该基因被发现在多种恶性肿瘤细胞中过表达,而其下调又是某些癌细胞分化所必需的。本文简要介绍c-myb转录因子并对其在机体造血及恶性肿瘤发生发展过程中如何被激活、如何发挥功能方面的进展作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号