共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary transporters of citrate in complex with metal ions belong to the bacterial CitMHS family, about which little is known. The transport of metal-citrate complexes in Streptomyces coelicolor has been investigated. The best cofactor for citrate uptake in Streptomyces coelicolor is Fe(3+), but uptake was also noted for Ca(2+), Pb(2+), Ba(2+), and Mn(2+). Uptake was not observed with the Mg(2+), Ni(2+), or Co(2+) cofactor. The transportation of iron- and calcium-citrate makes these systems unique among the CitMHS family members reported to date. No complementary uptake akin to that observed for the CitH (Ca(2+), Ba(2+), Sr(2+)) and CitM (Mg(2+), Ni(2+), Mn(2+), Co(2+), Zn(2+)) systems of Bacillus subtilis was noted. Competitive experiments using EGTA confirmed that metal-citrate complex formation promoted citrate uptake. Uptake of free citrate was not observed. The open reading frame postulated as being responsible for the metal-citrate transport observed in Streptomyces coelicolor was cloned and overexpressed in Escherichia coli strains with the primary Fe(3+)-citrate transport system (fecABCDE) removed. Functional expression was successful, with uptake of Ca(2+)-citrate, Fe(3+)-citrate, and Pb(2+)-citrate observed. No free-citrate transport was observed in IPTG (isopropyl-beta-d-thiogalactopyranoside)-induced or -uninduced E. coli. Metabolism of the Fe(3+)-citrate and Ca(2+)-citrate complexes, but not the Pb(2+)-citrate complex, was observed. Rationalization is based on the difference in metal-complex coordination upon binding of the metal by citrate. 相似文献
2.
Fur (f erric u ptake r egulator) is the master regulator of iron homeostasis in many bacteria, but how it responds specifically to Fe(II) in vivo is not clear. Biochemical analyses of Bacillus subtilis Fur (BsFur) reveal that in addition to Fe(II), both Zn(II) and Mn(II) allosterically activate BsFur–DNA binding. Dimeric BsFur co‐purifies with site 1 structural Zn(II) (Fur2Zn2) and can bind four additional Zn(II) or Mn(II) ions per dimer. Metal ion binding at previously described site 3 occurs with highest affinity, but the Fur2Zn2:Me2 form has only a modest increase in DNA binding affinity (approximately sevenfold). Metallation of site 2 (Fur2Zn2:Me4) leads to a ~ 150‐fold further enhancement in DNA binding affinity. Fe(II) binding studies indicate that BsFur buffers the intracellular Fe(II) concentration at ~ 1 μM. Both Mn(II) and Zn(II) are normally buffered at levels insufficient for metallation of BsFur site 2, thereby accounting for the lack of cross‐talk observed in vivo. However, in a perR mutant, where the BsFur concentration is elevated, BsFur may now use Mn(II) as a co‐repressor and inappropriately repress iron uptake. Since PerR repression of fur is enhanced by Mn(II), and antagonized by Fe(II), PerR may co‐regulate Fe(II) homeostasis by modulating BsFur levels in response to the Mn(II)/Fe(II) ratio. 相似文献
3.
4.
5.
Bacillus subtilis PerR is a Fur family repressor that senses hydrogen peroxide by metal-catalyzed oxidation. PerR contains a structural Zn(II) ion (Site 1) and a regulatory metal binding site (Site 2) that, upon association with either Mn(II) or Fe(II), allosterically activates DNA binding. In addition, a third less conserved metal binding site (Site 3) is present near the dimer interface in several crystal structures of homologous Fur family proteins. Here, we show that PerR proteins with substitutions of putative Site 3 residues (Y92A, E114A and H128A) are functional as repressors, but are unexpectedly compromised in their ability to sense H(2)O(2). Consistently, these mutants utilize Mn(II) but not Fe(II) as a co-repressor in vivo. Metal titrations failed to identify a third binding site in PerR, and inspection of the PerR structure suggests that these residues instead constitute a hydrogen binding network that modulates the architecture, and consequently the metal selectivity, of Site 2. PerR H128A binds DNA with high affinity, but has a significantly reduced affinity for Fe(II), and to a lesser extent for Mn(II). The ability of PerR H128A to bind Fe(II) in vivo and to thereby respond efficiently to H(2)O(2) was restored in a fur mutant strain with elevated cytosolic iron concentration. 相似文献
6.
7.
Bacillus subtilis, a Gram-positive soil bacterium, provides a model system for the study of metal ion homeostasis. Metalloregulatory proteins serve as the arbiters of metal ion sufficiency and regulate the expression of metal homeostasis pathways. In B. subtilis, uptake systems are regulated by the highly selective metal-sensing repressors Fur (iron), Zur (zinc), and MntR (manganese). Metal efflux systems are regulated by MerR and ArsR family homologs which, by contrast, can be rather non-specific with regard to metal selectivity. A Fur homolog, PerR, functions as an Fe(II)-dependent peroxide stress sensor and regulates putative metal transport and storage functions. 相似文献
8.
The metal dependence of Bacillus subtilis phytase 总被引:5,自引:0,他引:5
Kerovuo J Lappalainen I Reinikainen T 《Biochemical and biophysical research communications》2000,268(2):365-369
The metal ion requirement of a Bacillus subtilis phytase has been studied. Removal of metal ions from the enzyme by EDTA resulted in complete inactivation. Circular dichroism spectroscopy was used to study the effect of metal ion removal on the protein conformation. The loss of enzymatic activity is most likely due to a conformational change, as the circular dichroism spectra of holoenzyme and metal-depleted enzyme were different. Metal-depleted enzyme was partially able to restore the active conformation when incubated in the presence of calcium. Only minor reactivation was detected with other divalent metal ions and their combinations. Based on the data we conclude that B. subtilis phytase requires calcium for active conformation. Calcium has also a strong stabilizing effect on the enzyme against thermal denaturation. However, the conformational change resulted by calcium depletion does not affect the protease susceptibility. 相似文献
9.
Characterization of the metal ion binding site in the anti-terminator protein, HutP, of Bacillus subtilis 总被引:1,自引:0,他引:1 下载免费PDF全文
HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg2+ ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP–RNA interactions. The best divalent cations were Mn2+, Zn2+ and Cd2+, followed by Mg2+, Co2+ and Ni2+, while Cu2+, Yb2+ and Hg2+ were ineffective. In the HutP–RNA interactions, divalent cations cannot be replaced by monovalent cations, suggesting that a divalent metal ion is required for mediating the protein–RNA interactions. To clarify their importance, we have crystallized HutP in the presence of three different metal ions (Mg2+, Mn2+ and Ba2+), which revealed the importance of the metal ion binding site. Furthermore, these analyses clearly demonstrated how the metal ions cause the structural rearrangements that are required for the hut mRNA recognition. 相似文献
10.
11.
12.
13.
Linearization of pBG0 (a hydrid between Escherichia coli plasmid pBR322 and Staphylococcus aureus plasmid pUB110) was performed by lysis of the oxolinic acid treated Bacillus subtilis protoplasts with sodium dodecyl sulfate. This plasmid DNA linearization was used both for a detailed mapping of DNA gyrase cleavage sites of various strength and for the nucleotide sequence determinations at the points of gyrase-mediated scission by introducing the XhoI linker DNA. A total of 40 plasmids carrying inserted XhoI linker were sequenced by labeling 3' termini of XhoI sites; 38 of them were found to contain a duplication of four base-pairs of the plasmid sequence flanking the linker, which were characteristic of the oxolinic acid-induced DNA cleavage by E. coli DNA gyrase in vitro and in vivo. The relative strength of these sequenced sites was established by comparing their positions to the sites mapped on the appropriate plasmid genome. This allowed us to propose a consensus sequence of B. subtilis DNA gyrase in vivo cleavage site:GNAT GATCATNC% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaeikaiaabsfacaqGPaGaaeiiaiaabccacaqGGaGaaeiiaiaabcca% caqGOaGaae4raiaabMcacaqGGaGaaeiiaiaabccacaqGGaGaaeiiai% aabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGa% aeiiaiaabccacaqGOaGaaeyqaiaabMcaaaa!4E92!\[{\rm{(T) (G) (A)}}\]where N is any nucleotide. The bases in parentheses were preferred secondarily. The involvement of DNA gyrase in illegitimate recombination events in Bacillus subtilis is discussed. 相似文献
14.
15.
16.
Aminopeptidases can selectively catalyze the cleavage of the N-terminal amino acid residues from peptides and proteins. Bacillus subtilis aminopeptidase (BSAP) is most active toward p-nitroanilides (pNAs) derivatives of Leu, Arg, and Lys. The BSAP with broad substrate specificity is expected to improve its application. Based on an analysis of the predicted structure of BSAP, four residues (Leu 370, Asn 385, Ile 387, and Val 396) located in the substrate binding region were selected for saturation mutagenesis. The hydrolytic activity toward different aminoacyl-pNAs of each mutant BSAP in the culture supernatant was measured. Although the mutations resulted in a decrease of hydrolytic activity toward Leu-pNA, N385L BSAP exhibited higher hydrolytic activities toward Lys-pNA (2.2-fold) and Ile-pNA (9.1-fold) than wild-type BSAP. Three mutant enzymes (I387A, I387C and I387S BSAPs) specially hydrolyzed Phe-pNA, which was undetectable in wild-type BSAP. Among these mutant BSAPs, N385L and I387A BSAPs were selected for further characterized and used for protein hydrolysis application. Both of N385L and I387A BSAPs showed higher hydrolysis efficiency than the wild-type BASP and a combination of the wild-type and N385L and I387A BSAPs exhibited the highest hydrolysis efficiency for protein hydrolysis. This study will greatly facilitate studies aimed on change the substrate specificity and our results obtained here should be useful for BSAP application in food industry. 相似文献
17.
M Zoratti V Petronilli I Szabo 《Biochemical and biophysical research communications》1990,168(2):443-450
The presence of ion-conducting pores in the membrane of Bacillus subtilis giant protoplasts was discovered using the patch-clamp technique. Membrane stretch caused the activation of several conductances with values in the nS range. The observations indicate the presence of substate levels and of aggregates of channels behaving in a cooperative manner. Following repeated stretch cycles, the channels exhibited spontaneous activity. The characteristics of the electrical phenomena afterwards changed in time in a manner suggesting the decay of the giant channels into lower-conductance species, presumably corresponding to building blocks of the giant stretch-activated channels. 相似文献
18.
The kinetic parameters for the hydrolyses of different l-α-amino acid-β-naphthylamides by Bacillus subtilis aminopeptidase have been measured for the native enzyme and for the enzyme activated in 5 mm Co(NO3)2. In most cases Co2+ activation decreased Km(app) values and increased kcat values, in other cases km(app) and kcat values were increased; for the remainder of the substrates tested km(app) values and kcat values were decreased. In all cases tested the ratios of were increased (2- to 108-fold). For the native enzyme the order of specificity toward the l-amino acid-β-naphthylamides was Arg > Met > Trp > Lys > Leu and for the Co2+ activated enzyme the order of specificity was Lys > Arg > Met > Trp > Leu. The native enzyme hydrolyzed Pro-β-naphthylamide, but not α-Glu-β-naphthylamide; Co2+ activation of the enzyme affected an appreciable rate of hydrolysis of the latter substrate. 相似文献
19.
Substrate specificity and adenosine triphosphatase activity of the ATP-dependent deoxyribonuclease of Bacillus subtilis 总被引:3,自引:0,他引:3
Studies on the specificity of the ATP-dependent DNase of Bacillus subtilis 168, carried out with pure enzyme at the optimal conditions for its action, have shown that the substrate is double-stranded linear DNA. Linear single-stranded DNA (separated strands of B. subtilis DNA and linear phage fd DNA) is not attacked, neither are there any circular forms (supercoiled or nicked simian virus 40 and circular single-stranded fd DNAs). The double-stranded DNA can be completely hydrolysed, the limit products being, almost exclusively, mononucleotides. The presence of terminal phosphate residues in the substrate (either at the 3' or the 5' end) is not necessary for enzyme action. This DNase appears therefore to be an exonuclease processively liberating mononucleotides from both strands of the native linear DNA. ATP (indispensable for the DNase reaction) is also hydrolysed by the enzyme, to ADP and inorganic orthophosphate (Pi) in the presence of DNA. The apparent Km for ATP, in the ATPase reaction, is 0.15 mM. At high ATP concentrations, which inhibit the DNase activity, there is activation of the ATPase reaction. Three molecules of ATP are consumed for each DNA phosphodiester bond split, at optimal conditions for DNase activity. 相似文献
20.
The genetics and specificity of the constitutive excision repair system of Bacillus subtilis 总被引:14,自引:0,他引:14
An isogenic set of DNA repair-proficient and -deficient strains of B. subtilis, cured of all prophages, were constructed and analyzed for their sensitivities to selected mutagens. The results demonstrated that the lethal damage caused by ultraviolet (UV) radiation and by 4-nitroquinoline-1-oxide (4NQO) were repaired by the bacterial excision and/or recombination repair systems. In contrast, the lethal damages caused by ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS) were removed from the DNA by the recombination repair system of the bacteria, and not by the excision repair system. Significantly, the bacteria required both a functional recombination repair system and a functional excision repair system in order to remove the DNA damage caused by the bifunctional alkylating agent mitomycin C (MC). 相似文献