首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A membrane-associated 3,5-dichlorophenol reductive dehalogenase was isolated from Desulfitobacterium frappieri PCP-1. The highest dehalogenase activity was observed with the biomass cultured at 22 degrees C, compared to 30 and 37 degrees C, where the cell suspensions were 2.2 and 9.6 times less active, respectively. The reductive dehalogenase was purified 12.7-fold to apparent homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 57 kDa. Its dechlorinating activity was not inhibited by sulfate and nitrate but was completely inhibited by 2.5 mM sulfite and 10 mM KCN. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activities, suggesting the involvement of a corrinoid cofactor. Several polychlorophenols were dechlorinated at the meta and para positions. The apparent K(m) for 3,5-dicholorophenol was 49.3 +/- 3.1 microM at a methyl viologen concentration of 2 mM. Six internal tryptic peptides were sequenced by mass spectrometry. One open reading frame (ORF) was found in the Desulfitobacterium hafniense genome containing these peptide sequences. This ORF corresponds to a gene coding for a CprA-type reductive dehalogenase. The corresponding ORF (named cprA5) in D. frappieri PCP-1 was cloned and sequenced. The cprA5 gene codes for a 548-amino-acid protein that contains a twin-arginine-type signal for secretion. The gene product has a cobalamin binding site motif and two iron-sulfur binding motifs and shows 66% identity (76 to 77% similarity) with some tetrachloroethene reductive dehalogenases. This is the first CprA-type reductive dehalogenase that can dechlorinate chlorophenols at the meta and para positions.  相似文献   

3.
Chlorophenol degradation coupled to sulfate reduction.   总被引:11,自引:9,他引:2       下载免费PDF全文
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

4.
Chlorophenol degradation coupled to sulfate reduction   总被引:2,自引:0,他引:2  
We studied chlorophenol degradation under sulfate-reducing conditions with an estuarine sediment inoculum. These cultures degraded 0.1 mM 2-, 3-, and 4-chlorophenol and 2,4-dichlorophenol within 120 to 220 days, but after refeeding with chlorophenols degradation took place in 40 days or less. Further refeeding greatly enhanced the rate of degradation. Sulfate consumption by the cultures corresponded to the stoichiometric values expected for complete oxidation of the chlorophenol to CO2. Formation of sulfide from sulfate was confirmed with a radiotracer technique. No methane was formed, verifying that sulfate reduction was the electron sink. Addition of molybdate, a specific inhibitor of sulfate reduction, inhibited chlorophenol degradation completely. These results indicate that the chlorophenols were mineralized under sulfidogenic conditions and that substrate oxidation was coupled to sulfate reduction. In acclimated cultures the three monochlorophenol isomers and 2,4-dichlorophenol were degraded at rates of 8 to 37 mumol liter-1 day-1. The relative rates of degradation were 4-chlorophenol greater than 3-chlorophenol greater than 2-chlorophenol, 2,4-dichlorophenol. Sulfidogenic cultures initiated with biomass from an anaerobic bioreactor used in treatment of pulp-bleaching effluents dechlorinated 2,4-dichlorophenol to 4-chlorophenol, which persisted, whereas 2,6-dichlorophenol was sequentially dechlorinated first to 2-chlorophenol and then to phenol.  相似文献   

5.
Reductive dehalogenation of chlorophenols has been reported in undefined anaerobic cultures but never before in an anaerobic pure culture. We found that the sulfate-reducing bacterium Desulfomonile tiedjei DCB-1 reductively dehalogenates pentachlorophenol (PCP) and other chlorophenols. The maximum rate of PCP dechlorination observed was 54 mu mol of Cl- h-1 g of protein-1. 3-Chlorobenzoate appeared to serve as a required inducer for PCP dehalogenation; however, neither PCP nor 3-chlorophenol induced dehalogenation. Dehalogenation was catalyzed by living cells, and formate served as a required electron donor. D. tiedjei dehalogenated meta-chlorine substituents of chlorophenols (i.e., PCP was degraded to 2,4,6-trichlorophenol). Generally, more highly chlorinated phenol congeners were more readily dechlorinated, and 3-chlorophenol was not dehalogenated. Growing cultures dehalogenated PCP, but greater than 10 microM PCP (approximately 1.7 mmol g of protein-1) reversibly inhibited growth.  相似文献   

6.
Reductive dehalogenation of chlorophenols has been reported in undefined anaerobic cultures but never before in an anaerobic pure culture. We found that the sulfate-reducing bacterium Desulfomonile tiedjei DCB-1 reductively dehalogenates pentachlorophenol (PCP) and other chlorophenols. The maximum rate of PCP dechlorination observed was 54 mu mol of Cl- h-1 g of protein-1. 3-Chlorobenzoate appeared to serve as a required inducer for PCP dehalogenation; however, neither PCP nor 3-chlorophenol induced dehalogenation. Dehalogenation was catalyzed by living cells, and formate served as a required electron donor. D. tiedjei dehalogenated meta-chlorine substituents of chlorophenols (i.e., PCP was degraded to 2,4,6-trichlorophenol). Generally, more highly chlorinated phenol congeners were more readily dechlorinated, and 3-chlorophenol was not dehalogenated. Growing cultures dehalogenated PCP, but greater than 10 microM PCP (approximately 1.7 mmol g of protein-1) reversibly inhibited growth.  相似文献   

7.
The biodegradabilities of polychlorinated phenols including 5 isomers of trichlorophenols, 3 isomers of tetrachlorophenols and pentachlorophenol, were tested with 170 samples of soil collected from various environments. After the samples were inoculated into a succinate-containing mineral medium and incubated, the cultures were acclimatized to phenol concentrations from 10 to 100 ppm. Twenty six samples (15%) were observed to degrade 2, 4, 6-trichlorophenol (246TrCP) and a mixed sample of soil degraded 2, 3, 4, 6-tetrachlorophenol, but no degradation was seen with other chlorophenols. All of the mixed cultures acclimatized to and degrading 246TrCP also degraded phenol. For the degradation of 246TrCP, the NO3′ ion was preferred to the NH4+ ion as a nitrogen source. At concentrations below 500 ppm, 246TrCP was degraded completely within 8 d and the chloride ion was detected in the culture broth at an amount corresponding to that of the chlorinated phenol, although cell growth was inhibited at a 246TrCP concentration of 1,000 ppm. No possible intermediate product of 246TrCP was detected in the cultures.  相似文献   

8.
A bacterial consortium that anaerobically mineralized phenoxyacetate, with transient production of phenol as an intermediate, was obtained from a methanogenic aquifer site near the Norman, OK municipal landfill. This consortium was able to convert the eight halogenated chlorophenoxyacetates tested to the corresponding chlorophenols. The chlorophenols were not subsequently metabolized. The addition of reduced substrates increased the rate of degradation of all chlorophenoxyacetates, with 78% of mono- and di-chlorinated substrates being transformed to chlorophenols in butyrate-amended cultures, compared to less than 37% transformed in unsupplemented cultures. Butyrate increased the transformation of 2,4,5-trichlorophenoxyacetate from 10% to 20%. An experiment evaluating the effects of several compounds on the side-chain cleavage reaction of 3-chlorophenoxyacetate showed that addition of compounds with readily act as hydrogen donors (butyrate, crotonate, ethanol, propionate, and hydrogen) resulted in 2 to 5 times the amount of 3-chlorophenoxyacetate transformed compared to controls with no amendment, formate had a slight stimulatory effect, and acetate and methanol had no effect. Butyrate addition also increased the rate of phenoxyacetate degradation, resulting in transient phenol accumulation not observed in butyrate-unamended controls. These results support the hypothesis that the side-chain cleavage of phenoxyacetate is a reductive process that is stimulated by the oxidation of reduced cosubstrates.  相似文献   

9.
Nucleotide sequences homologous to arpA encoding the A-factor receptor protein (ArpA) of Streptomyces griseus are distributed in a wide variety of streptomycetes. Two genes, cprA and cprB , each encoding an ArpA-like protein were found and cloned from Streptomyces coelicolor A3(2). CprA and CprB shared 90.7% identity in amino acid sequence and both showed about 35% identity to ArpA. Disruption of cprA by use of an M13 phage-derived single-stranded vector resulted in severe reduction of actinorhodin and undecylprodigiosin production. In addition, the timing of sporulation in the cprA disruptants was delayed by 1 day. The cprA gene thus appeared to act as a positive regulator or an accelerator for secondary metabolite formation and sporulation. Consistent with this idea, introduction of cprA on a low-copy-number plasmid into the parental strain led to overproduction of these secondary metabolites and accelerated the timing of sporulation. On the other hand, cprB disruption resulted in precocious and overproduction of actinorhodin. However, almost no effect on undecylprodigiosin was detected in the cprB disruptants. Sporulation of the cprB disruptant began 1 day earlier than the parental strain. The cprB gene thus behaved as a negative regulator on actinorhodin production and sporulation. Consistent with this, extra copies of cprB in the parental strain caused reduced production of actinorhodin and delay in sporulation. It is thus concluded that both cprA and cprB play regulatory roles in both secondary metabolism and morphogenesis in S. coelicolor A3(2), just as the arpA /A-factor system in Streptomyces griseus .  相似文献   

10.
A membrane-associated 3,5-dichlorophenol reductive dehalogenase was isolated from Desulfitobacterium frappieri PCP-1. The highest dehalogenase activity was observed with the biomass cultured at 22°C, compared to 30 and 37°C, where the cell suspensions were 2.2 and 9.6 times less active, respectively. The reductive dehalogenase was purified 12.7-fold to apparent homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 57 kDa. Its dechlorinating activity was not inhibited by sulfate and nitrate but was completely inhibited by 2.5 mM sulfite and 10 mM KCN. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activities, suggesting the involvement of a corrinoid cofactor. Several polychlorophenols were dechlorinated at the meta and para positions. The apparent Km for 3,5-dicholorophenol was 49.3 ± 3.1 μM at a methyl viologen concentration of 2 mM. Six internal tryptic peptides were sequenced by mass spectrometry. One open reading frame (ORF) was found in the Desulfitobacterium hafniense genome containing these peptide sequences. This ORF corresponds to a gene coding for a CprA-type reductive dehalogenase. The corresponding ORF (named cprA5) in D. frappieri PCP-1 was cloned and sequenced. The cprA5 gene codes for a 548-amino-acid protein that contains a twin-arginine-type signal for secretion. The gene product has a cobalamin binding site motif and two iron-sulfur binding motifs and shows 66% identity (76 to 77% similarity) with some tetrachloroethene reductive dehalogenases. This is the first CprA-type reductive dehalogenase that can dechlorinate chlorophenols at the meta and para positions.  相似文献   

11.
Summary Microbiological decontamination of technical chlorophenol-containing soil by composting was studied. In two 50 m3 windrows the concentration of chlorophenols went down from 212 mg kg-1 to 30 mg kg-1 in 4 summer months and after the second summer of composting it was only 15 mg kg-1. All chlorophenol congeners present in the technical chlorophenol were degraded, but the main dimeric impurities, polychlorinated phenoxyphenols were recalcitrant. The contaminated soil was found to contain chlorophenol-degrading microbes, 5x106 cfu g-1 of dry windrow soil. Laboratory experiments with samples from the windrow compost showed that chlorophenols were truly degraded and that chlorophenol loss by evaporation was less than 1.5% under the circumstances studied. Laboratory experiments also showed that degradation of chlorophenols (120 mg kg-1) was accelerated when sterilized contaminated soil was inoculated with Rhodococcus chlorophenolicus (mineralizer of several chlorophenols) or naturally occurring microbes of the field composts. Biomethylation of chlorophenols in the composts was insignificant compared to biodegradation.  相似文献   

12.
13.
Three strains of Pseudomonas pickettii that can grow with 2,4,6-trichlorophenol (2,4,6-TCP) as the sole source of carbon and energy were isolated from different mixed cultures of soil bacterial populations that had been acclimatized to 2,4,6-TCP. These strains released 3 mol of chloride ion from 1 mol of 2,4,6-TCP during the complete degradation of the TCP. Of these strains, P. pickettii DTP0602 in high-cell-density suspension cultures dechlorinated various chlorophenols (CPs). Cells that were preincubated with 2,4,6-TCP converted isomers of 4-CP to the corresponding chloro-p-hydroquinones, but those preincubated with 4-CP converted CPs lacking a chlorine atom(s) at the o position to isomers of chlorocatechol. The ability of DTP0602 to dechlorinate 2,4,6-TCP was induced by 2,6-dichlorophenol, 2,3,6- and 2,4,6-TCP, and 2,3,4,6-tetrachlorophenol and was repressed in the presence of succinate or glucose.  相似文献   

14.
Three strains of Pseudomonas pickettii that can grow with 2,4,6-trichlorophenol (2,4,6-TCP) as the sole source of carbon and energy were isolated from different mixed cultures of soil bacterial populations that had been acclimatized to 2,4,6-TCP. These strains released 3 mol of chloride ion from 1 mol of 2,4,6-TCP during the complete degradation of the TCP. Of these strains, P. pickettii DTP0602 in high-cell-density suspension cultures dechlorinated various chlorophenols (CPs). Cells that were preincubated with 2,4,6-TCP converted isomers of 4-CP to the corresponding chloro-p-hydroquinones, but those preincubated with 4-CP converted CPs lacking a chlorine atom(s) at the o position to isomers of chlorocatechol. The ability of DTP0602 to dechlorinate 2,4,6-TCP was induced by 2,6-dichlorophenol, 2,3,6- and 2,4,6-TCP, and 2,3,4,6-tetrachlorophenol and was repressed in the presence of succinate or glucose.  相似文献   

15.
Summary Strains degrading 3-methylbenzoate (3MB) via ortho-cleavage were enriched by preselection with 4-carboxymethyl-2-methylbut-2-en-1,4-olide (2-methyllactone, 2ML) as sole carbon source or by counter selection of meta-cleaving strains using 3-chlorobenzoate (3CB) as suicide substrate. These strains and microorganisms obtained from continuous cultures with 3CB/3MB (Schmidt et al. 1985) or with chlorophenols and cresols (Schmidt 1987) were grouped according to their abilities to grow on 3CB, 3MB or 2ML and their mode of ring-cleavage during growth with aromatic substrates. Each group was tested for its capability to mineralize mixtures of 3CB and 3MB and the extent of DOC-removal was quantified.  相似文献   

16.
Anaerobic degradation of monochlorophenols and monochlorobenzoates in a variety of aquatic sediments was compared under four enrichment conditions. A broader range of compounds was degraded in enrichments inoculated with sediment exposed to industrial effluents. Degradation of chloroaromatic compounds was observed most often in methanogenic enrichments and in enrichments amended with 1 mM bromoethane sulfonic acid. Degradation was observed least often in enrichments with added nitrate or sulfate. The presence of 10 mM bromoethane sulfonic acid prevented or inhibited degradation of most compounds tested. Primary enrichments in which KNO(3) was periodically replenished to maintain enrichment characteristics degraded chlorobenzoates, but not chlorophenols. In contrast, primary enrichments in which Na(2)SO(4) was periodically replenished failed to degrade any chloroaromatic compounds. Upon transfer to fresh medium, none of the sulfate enrichments required the presence of Na(2)SO(4) for degradation, while only two nitrate enrichments required the presence of KNO(3) for degradation. As a class of compounds, chlorophenols were degraded more readily than chlorobenzoates. However, as individual compounds 3-chlorobenzoate, 2-chlorophenol, and 3-chlorophenol degradation was observed most often and with an equal frequency. Within the chlorophenol class, the relative order of degradability was ortho > meta > para, while that of chlorobenzoates was meta > ortho > para, In laboratory transfers, 2-chlorobenzoate, 3-chlorobenzoate, and 2-chlorophenol degradation was most easily maintained, while degradation of para-chlorinated compounds was very difficult to maintain.  相似文献   

17.
18.
Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. Utilization of each chlorophenol and chlorobenzoate isomer was observed under at least one reducing condition; however, no single reducing condition permitted the metabolism of all six compounds tested. The anaerobic biodegradation of the chlorophenols and chlorobenzoates depended on the electron acceptor available and on the position of the chlorine substituent. In general, similar activities were observed under the different reducing conditions in both the freshwater and estuarine sediments. Under denitrifying conditions, degradation of 3- and 4-chlorobenzoate was accompanied by nitrate loss corresponding reasonably to the stoichiometric values expected for complete oxidation of the chlorobenzoate to CO2. Under sulfidogenic conditions, 3- and 4-chlorobenzoate, but not 2-chlorobenzoate, and all three monochlorophenol isomers were utilized, while under methanogenic conditions all compounds except 4-chlorobenzoate were metabolized. Given that the pattern of activity appears different for these chlorinated compounds under each reducing condition, their biodegradability appears to be more a function of the presence of competent microbial populations than one of inherent molecular structure.  相似文献   

19.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

20.
Laboratory studies of disinfectants against Legionella pneumophila   总被引:5,自引:0,他引:5  
Legionella pneumophila suspended in tap water was exposed to biocides recommended for inhibiting biological growth in cooling towers and evaporative condensers of air-conditioning systems. Chlorine, 2,2-dibromo-3-nitrilopropionamide, and a compound containing didecyldimethylammonium chloride and isopropanol were effective in destroying concentratiois of 10(5) to 10(6) viable cells per ml. Formulations consisting of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one, disodium ethylene bis(thiocarbamate) and sodium dimethyl dithiocarbamate, and a phenolic with pentachlorophenate and sodium salts of other chlorophenols were less effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号