首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for the rapid and sensitive detection of Legionella pneumophila in hot water systems has been developed. The method is based on an IF assay combined with detection by solid-phase cytometry. This method allowed the enumeration of L. pneumophila serogroup 1 and L. pneumophila serogroups 2 to 6, 8 to 10, and 12 to 15 in tap water samples within 3 to 4 h. The sensitivity of the method was between 10 and 100 bacteria per liter and was principally limited by the filtration capacity of membranes. The specificity of the antibody was evaluated against 15 non-Legionella strains, and no cross-reactivity was observed. When the method was applied to natural waters, direct counts of L. pneumophila were compared with the number of CFU obtained by the standard culture method. Direct counts were always higher than culturable counts, and the ratio between the two methods ranged from 1.4 to 325. Solid-phase cytometry offers a fast and sensitive alternative to the culture method for L. pneumophila screening in hot water systems.  相似文献   

2.
A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required.  相似文献   

3.
A new method for the rapid and sensitive detection of Legionella pneumophila in hot water systems has been developed. The method is based on an IF assay combined with detection by solid-phase cytometry. This method allowed the enumeration of L. pneumophila serogroup 1 and L. pneumophila serogroups 2 to 6, 8 to 10, and 12 to 15 in tap water samples within 3 to 4 h. The sensitivity of the method was between 10 and 100 bacteria per liter and was principally limited by the filtration capacity of membranes. The specificity of the antibody was evaluated against 15 non-Legionella strains, and no cross-reactivity was observed. When the method was applied to natural waters, direct counts of L. pneumophila were compared with the number of CFU obtained by the standard culture method. Direct counts were always higher than culturable counts, and the ratio between the two methods ranged from 1.4 to 325. Solid-phase cytometry offers a fast and sensitive alternative to the culture method for L. pneumophila screening in hot water systems.  相似文献   

4.
The occurrence and viable counts of Legionella pneumophila in acid-treated water samples of 62 cooling towers on the main island of Japan were determined by inoculating them onto plates of Wadowsky-Yee-Okuda (WYO) agar medium. WYO plate cultures of 39 (63%) of the samples yielded L. pneumophila with viable counts ranging from 10 to 10(4) colony-forming units per 100 ml. Of the L. pneumophila isolates, 157 were serologically identified as serogroup 1, and the remaining 21 were agglutinated by serogroup 3 (2 strains) and serogroup 6 (19 strains) antisera. In each culture-positive water sample, the pH and the number of other bacteria were found not be statistically significantly correlated with the viable counts of L. pneumophila. However, a higher rate of recovery of L. pneumophila was obtained with the water samples with a smaller number of other bacteria. Practical use of commercially available antialgal or antimicrobial agents was found not to be significantly effective for controlling the occurrence and growth of L. pneumophila in cooling tower water.  相似文献   

5.
A sensitive and specific method has been developed to enumerate viable L. pneumophila and other Legionella spp. in water by epifluorescence microscopy in a short period of time (a few hours). This method allows the quantification of L. pneumophila or other Legionella spp. as well as the discrimination between viable and nonviable Legionella. It simultaneously combines the specific detection of Legionella cells using antibodies and a bacterial viability marker (ChemChrome V6), the enumeration being achieved by epifluorescence microscopy. The performance of this immunological double-staining (IDS) method was investigated in 38 natural filterable water samples from different aquatic sources, and the viable Legionella counts were compared with those obtained by the standard culture method. The recovery rate of the IDS method is similar to, or higher than, that of the conventional culture method. Under our experimental conditions, the limit of detection of the IDS method was <176 Legionella cells per liter. The examination of several samples in duplicates for the presence of L. pneumophila and other Legionella spp. indicated that the IDS method exhibits an excellent intralaboratory reproducibility, better than that of the standard culture method. This immunological approach allows rapid measurements in emergency situations, such as monitoring the efficacy of disinfection shock treatments. Although its field of application is as yet limited to filterable waters, the double-staining method may be an interesting alternative (not equivalent) to the conventional standard culture methods for enumerating viable Legionella when rapid detection is required.  相似文献   

6.
Conventional methods for the enumeration of airborne micro-organisms are inaccurate and time-consuming, hence the interest in novel approaches is increasing. In the present study, the use of solid phase cytometry (SPC) was evaluated for the enumeration of airborne micro-organisms. A 4 h SPC procedure based on viability staining was applied to samples from 50 locations and compared with an optimised culture-based method. Plate counts after air sampling were repeatable but strongly dependent on sampling volume. Samples with low or high microbial load were difficult to analyse using the culture-based method, unlike with SPC. Results show that SPC can be considered superior to the culture-based method because of its much higher dynamic range, its speed and its ability to enumerate not only culturable but all viable micro-organisms.  相似文献   

7.
The bacterioplankton from a number of lakes that differed in nutrient status in the English Lake District was examined with a number of techniques for enumeration and activity assessment. Natural water samples showed a clear correlation between total counts and trophic status. Esterase activity measurements with Chemchrome B were able to distinguish high- and low-nutrient-status lakes, whereas tetrazolium salt (5-cyano-2,3-ditoyltetrazolium chloride) reduction, the direct viable count-cell elongation assay, and culturability measurements could not. Tetrazolium salt reduction and esterase activity measurements labeled a significant number of cells from water of all nutrient levels, whereas the direct viable count-cell elongation method was of use only in oligotrophic waters. Size fractionation of samples showed that the culturable cells were retained by the larger filters, especially in nutrient-rich waters. Esterase activity measurements also favored the larger cells. The differences observed between assays using water that differed in trophic status raise questions about the use of these tests as a definitive measure of viability.  相似文献   

8.
The bacterioplankton from a number of lakes that differed in nutrient status in the English Lake District was examined with a number of techniques for enumeration and activity assessment. Natural water samples showed a clear correlation between total counts and trophic status. Esterase activity measurements with Chemchrome B were able to distinguish high- and low-nutrient-status lakes, whereas tetrazolium salt (5-cyano-2,3-ditoyltetrazolium chloride) reduction, the direct viable count-cell elongation assay, and culturability measurements could not. Tetrazolium salt reduction and esterase activity measurements labeled a significant number of cells from water of all nutrient levels, whereas the direct viable count-cell elongation method was of use only in oligotrophic waters. Size fractionation of samples showed that the culturable cells were retained by the larger filters, especially in nutrient-rich waters. Esterase activity measurements also favored the larger cells. The differences observed between assays using water that differed in trophic status raise questions about the use of these tests as a definitive measure of viability.  相似文献   

9.
Legionella contamination of dental-unit waters.   总被引:9,自引:1,他引:8       下载免费PDF全文
Water samples collected from 28 dental facilities in six U.S. states were examined for the presence of Legionella pneumophila and other Legionella spp. by the PCR-gene probe, fluorescent-antibody microscopic, and viable-plate-count detection methods. The PCR and fluorescent-antibody detection methods, which detect both viable and viable nonculturable Legionella spp., gave higher counts and rates of detection than the plate count method. By the PCR-gene probe detection method, Legionella spp. were detected in 68% of the dental-unit water samples and L. pneumophila was detected in 8%. Concentrations of Legionella spp. in dental-unit water reached 1,000 organisms per ml or more in 36% of the samples, and 19% of the samples were in the category of 10,000/ml or above. L. pneumophila, when present in dental-unit water, never reached concentrations of 1,000/ml or more. Microscopic examination with fluorescent-antibody staining indicated that the contamination was in the dental-unit water lines rather than in the handpieces. Legionella spp. were present in 61% of potable water samples collected for comparative analysis from domestic and institutional faucets and drinking fountains; this percentage was not significantly different from the rate of detection of Legionella spp. in dental-unit water. However, in only 4% of the potable water samples did Legionella spp. reach concentrations of 1,000 organisms per ml, and none was in the 10,000 organisms-per-ml category, and so health-threatening levels of Legionella spp. in potable water were significantly lower than in dental-unit water. L. pneumophila was found in 2% of the potable water samples, but only at the lowest detectable level.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Abstract Extended survival of Legionella pneumophila , using both a clinical and an environmental isolate, was studied in drinking water, creek water, and estuarine water microcosms. Legionella populations were monitored by acridine orange direct counts (AODC) and viable count on buffered charcoal yeast extract agar amended with alpha-ketoglutarate (BCYEα). Initial colony counts of the clinical isolate in drinking and creek water microcosms were 2 × 108 cfu/ml and, after incubation for 1.5 years, the plate counts decreased to 3 × 106 cfu/ml. The AODC counts, however, did not change significantly. The clinical isolate in estuarine water decreased in plate counts to 102 (cfu/ml) over the same period. After incubation for 1.5 years at 15°C in the microcosms, Legionella plate counts of creek and drinking water decreased by two logs. Direct microscopic examination of aliquots removed from all microcosms revealed the presence of small bacilli, large bacilli and rare filamentous cells. The environmental isolate demonstrated only one colony morphology upon culture on BCYEα. Interestingly, after four months incubation in the microcosm, upon plating the clinical isolate on BCYEα, two distinct colony types were evident. Examination by immunofluorescent staining employing a monoclonal antibody against L. pneumophila revealed both bacillus and filamentous forms. The total cellular proteins of both morphotypes were examined by sodium dodecyl sulfate polyacrylyamide gel electrophoresis (SDS-PAGE), demonstrating identical protein patterns. Those Legionella cells remaining culturable during 1.5 years of incubation grew rapidly when transferred to BCYEα. Incubation was continued and it was found that some strains of L. pneumophila serogroup 1 can remain viable for longer than 2.4 years under low-nutrient conditions.  相似文献   

11.
Yeast cells and mould spores can be fluorescently labelled with the viability stain carboxyfluorescein diacetate (CFDA) and detected on a membrane filter by laser scanning (solid phase cytometry, SPC). Although the selectivity of an existing commercial SPC procedure for fungi is ensured by using a 2 microm pore size membrane filter and a pre-incubation on a proprietary spore swelling/activation medium, some bacteria are still co-detected. In the present study, the selectivity for fungi has been enhanced by combining the green fluorescent CFDA with a second red fluorescent label, i.e. TRITC-concanavalin A, targetting fungal but not commonly bacterial cells. Additional improvements resulted from the prolongation of the pre-incubation and from the extra-rinsing of the membrane filter. The improved method was applied to detect fungi in hospital waters, dialysis fluids and endoscopic rinse waters. In general, SPC detected more fungi in water than plate methods. The occurrence of fungi in dialysis fluid and endoscopic rinse water was rare. Evidence for the presence of fungal viable but non-culturable (VBNC) cells in water was weak.  相似文献   

12.
It is widely accepted that the heterotrophic plate count method may not support the growth of all viable bacteria which may be present within a water sample and that alternative procedures using 'viability markers' may yield additional information. In this study, ChemChrome B (CB), which is converted to a fluorescent product by esterase activity, was used to stain viable bacteria (captured by membrane filtration) from potable water samples. The labelled bacteria from each sample were subsequently enumerated using a novel laser scanning instrument (ChemScan). Analysis of 107 potable water samples using this procedure demonstrated the presence of a significantly greater number of bacteria than were detected by culture (z-test, P < 0.05). The mean number of bacteria isolated by culture on R2A agar incubated at 22 degrees C for 7 d was only 25.2% of the total number of viable bacteria detected using the CB/ChemScan viability assay. Further analysis of 81 water samples using a 5-cyano-2,3,4-tolyl-tetrazolium chloride (CTC) viability assay also demonstrated the presence of many viable bacteria which were not capable of growth under the culture conditions employed in this study. However, the results indicate that ChemChrome B has the ability to stain a significantly greater number of heterotrophs than CTC (z-test, P < 0.05). In contrast, six potable waters were identified in which the CTC viability assay resulted in counts greater than those obtained using CB. The ChemScan instrument was successfully used for rapid and accurate enumeration of labelled micro-organisms, allowing information on the total viable microbial load of a water sample to be determined within 1 h. Furthermore, the ChemScan system has the potential for use in detecting specific organisms labelled with fluorescently-labelled antibodies or nucleic acid probes.  相似文献   

13.
This study was conducted to evaluate the performance of the MicroFoss system (Biosys, Ann Arbor, MI) for enumeration of total viable organisms, Escherichia coli and coliforms in ground beef. The system performance was compared to that of the USDA Bacteriological Analytical Method (BAM) reference culture methods. The correlation coefficients for the regression lines comparing the MicroFoss system detection times to the results of plate count methods for the total viable counts, coliform counts and the most probable number (MPN) method for E. coli were -0.95, -0.96 and -0.97, respectively. Tests comparing the reproducibility of data generated independently by two technicians on the same batch of samples showed no significant differences (P>0.05) in the MicroFoss detection times and culture results. The plate count methods for the total viable counts and coliform counts, and the MPN method for E. coli required 10, 11 and 22 times, respectively, the amount of time to complete tests compared to the length of time required to perform these tests using the MicroFoss system. The MicroFoss system produced reproducible data and provided a rapid and cost-efficient alternative method for enumeration of TVC, coliforms and E. coli in ground beef.  相似文献   

14.
The aim of the study was to perform molecular genetic analysis based on multi-locus sequence typing in order to identify source of Legionnaires' disease outbreak in town Verkhnyaya Pyshma in July 2007 and genetic profile of the causative agent. Sequence-based typing protocol recommended by European Working Group on Legionella infection (EWGLI) was used. It was not possible to obtain satisfactory results of Fla gene sequencing for all samples. Obtained allelic profiles of other genes were typical for L. pneumophila. Allelic profiles of L. pneumophila isolated from patients were identical and matched with L. pneumophila DNA detected in water from hot water supply of domestic building, but differed from cooling tower's isolates and isolates from showerhead in apartment of one patient. Identity of 5 genes of L. pneumophila isolated from autopsy samples and from hot water of central hot water supply of domestic building confirms aspiration route of infection through hot water contaminated by the microorganism. L. pneumophila detected in water from cooling tower, showerhead in apartment of one patient, and from drainage canal of hot water supply station belonged to other allelic variants and, therefore, are not related with the outbreak.  相似文献   

15.
Quantitative Legionella PCRs targeting the 16S rRNA gene (specific for the genus Legionella) and the mip gene (specific for the species Legionella pneumophila) were applied to a total of 223 hot water system samples (131 in one laboratory and 92 in another laboratory) and 37 cooling tower samples (all in the same laboratory). The PCR results were compared with those of conventional culture. 16S rRNA gene PCR results were nonquantifiable for 2.8% of cooling tower samples and up to 39.1% of hot water system samples, and this was highly predictive of Legionella CFU counts below 250/liter. PCR cutoff values for identifying hot water system samples containing >10(3) CFU/liter legionellae were determined separately in each laboratory. The cutoffs differed widely between the laboratories and had sensitivities from 87.7 to 92.9% and specificities from 77.3 to 96.5%. The best specificity was obtained with mip PCR. PCR cutoffs could not be determined for cooling tower samples, as the results were highly variable and often high for culture-negative samples. Thus, quantitative Legionella PCR appears to be applicable to samples from hot water systems, but the positivity cutoff has to be determined in each laboratory.  相似文献   

16.
Legionella pneumophila, a facultative intracellular human pathogen, can persist for long periods in natural and artificial aquatic environments. Eradication of this bacterium from plumbing systems is often difficult. We tested L. pneumophila survival after monochloramine treatment. Survival was monitored using the BacLight Bacterial Viability Kit (Molecular Probes), ChemChrome V6 Kit (Chemunex), quantitative polymerase chain reaction and culturability on buffered charcoal-yeast extract agar. In nonculturable samples, regain of culturability was obtained after addition of the amoeba Acanthamoeba castellanii, and esterase activity and membrane integrity were observed after >4 months after treatment. These results demonstrate for the first time that L. pneumophila could persist for long periods in biofilms into the viable but nonculturable (VBNC) state. Monitoring L. pneumophila in water networks is generally done by enumeration on standard solid medium. This method does not take into account VBNC bacteria. VBNC L. pneumophila could persist for long periods and should be resuscitated by amoeba. These cells constitute potential sources of contamination and should be taken into account in monitoring water networks.  相似文献   

17.
Several selective media were evaluated for the primary isolation and enumeration of Staphylococcus aureus from halogenated indoor swimming pool waters. Standard plate counts of the viable population and total coliform densities were also determined to ascertain their value as indicator systems. All studies were done with membrane filters. The most selective, accurate, and reliable medium was Vogel-Johnson (VJ) medium supplemented with 0.5% pyruvate. This medium recovered two times more typical colonies than VJ medium alone, and subsequent identification of these well-defined black colonies proved that approximately 80% were S. aureus. The S. aureus recoveries correlated well with halogen levels and bather density use also. In contrast, VJ medium alone was 60% selective for S. aureus, and VJ medium supplemented with catalase did not increase either the percent recovery or the selectivity over that of VJ medium alone. Standard plate counts did not correlate with halogen levels, bather density, or total viable colonies. Coliforms were rarely recovered from indoor pool waters and were not considered to be useful indicators of water quality.  相似文献   

18.
Aims: We developed an improved Fluorescent In Situ Hybridization FISH‐based method to detect viable Escherichia coli cells by solid phase cytometry (SPC), and results were compared to those obtained by the standard culture method. Methods and Results: The method includes a direct viable count (DVC) assay, multi‐probes labelled and unlabelled (helpers) to detect specifically viable E. coli cells and to enhance SPC cell counts. We demonstrate that helpers increase the fluorescence intensity of hybridized E. coli cells as detected by SPC and assess the high specificity of the DVC–FISH procedure on a large panel of cultured strains. Application to seawater, freshwater and wastewater samples showed a good correlation between SPC cells counts and standard plate counts. Conclusion: The high specificity of the procedure was demonstrated as well as its accuracy for detecting and counting viable E. coli cells in environmental samples. Significance and Impact of the Study: The developed approach may be used to monitor faecal contamination sources and to investigate the occurrence of viable E. coli in natural environments.  相似文献   

19.
Several selective media were evaluated for the primary isolation and enumeration of Staphylococcus aureus from halogenated indoor swimming pool waters. Standard plate counts of the viable population and total coliform densities were also determined to ascertain their value as indicator systems. All studies were done with membrane filters. The most selective, accurate, and reliable medium was Vogel-Johnson (VJ) medium supplemented with 0.5% pyruvate. This medium recovered two times more typical colonies than VJ medium alone, and subsequent identification of these well-defined black colonies proved that approximately 80% were S. aureus. The S. aureus recoveries correlated well with halogen levels and bather density use also. In contrast, VJ medium alone was 60% selective for S. aureus, and VJ medium supplemented with catalase did not increase either the percent recovery or the selectivity over that of VJ medium alone. Standard plate counts did not correlate with halogen levels, bather density, or total viable colonies. Coliforms were rarely recovered from indoor pool waters and were not considered to be useful indicators of water quality.  相似文献   

20.
Sixty-eight commercial bottled mineral waters (64 brands, 68 different 'best-before dates') were tested for the presence of bacteria and fungi. Six samples were Legionella antigen positive and six were Legionella pneumophila PCR positive. Two samples were both Legionella antigen and L. pneumophila PCR positive. Legionella cultures were negative. Although the PCR might have detected only dead Legionella cells, the PCR has been described to detect specifically viable but not culturable (VBNC) L. pneumophila cells as well. Whether VBNC bacteria may be present in bottled mineral waters and the risk for infection this may pose for severely immunocompromised patients should be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号