首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although an association between chilling tolerance and aquaporinshas been reported, the exact mechanisms involved in this relationshipremain unclear. We compared the expression profiles of aquaporingenes between a chilling-tolerant and a low temperature-sensitiverice variety using real-time PCR and identified seven genesthat closely correlated with chilling tolerance. Chemical treatmentexperiments, by which rice plants were induced to lose theirchilling tolerance, implicated the PIP1 (plasma membrane intrinsicprotein 1) subfamily member genes in chilling tolerance. Ofthese members, changes in expression of the OsPIP1;3 gene suggestedthis to be the most closely related to chilling tolerance. AlthoughOsPIP1;3 showed a much lower water permeability than membersof the OsPIP2 family, OsPIP1;3 enhanced the water permeabilityof OsPIP2;2 and OsPIP2;4 when co-expressed with either of theseproteins in oocytes. Transgenic rice plants (OE1) overexpressingOsPIP1;3 showed an enhanced level of chilling tolerance andthe ability to maintain high OsPIP1;3 expression levels underlow temperature treatment, similar to that of chilling-tolerantrice plants. We assume that OsPIP1;3, constitutively overexpressedin the leaf and root of transgenic OE1 plants, interacts withmembers of the OsPIP2 subfamily, thereby improving the plants’water balance under low temperatures and resulting in the observedchilling tolerance of the plants.  相似文献   

2.
The role of aquaporin RWC3 in drought avoidance in rice   总被引:24,自引:0,他引:24  
Although the discovery of aquaporins in plants has resulted in a paradigm shift in the understanding of plant water relations, the relationship between aquaporins and drought resistance still remains elusive. From an agronomic viewpoint, upland rice is traditionally considered as showing drought avoidance. In the investigation of different morphological and physiological responses of upland rice (Oryza sativa L. spp indica cv. Zhonghan 3) and lowland rice (O. sativa L. spp japonica cv. Xiushui 63) to water deficit, we observed young leaf rolling and the remarkable decline of cumulative transpiration in the upland rice. The expression of water channel protein RWC3 mRNA was increased in upland rice at the early response (up to 4 h) to the 20% polyethylene glycol (PEG) 6000 treatment, whereas there was no significant expression changes in lowland rice. Protein levels were increased in upland rice and decreased in lowland rice at 10 h after the water deficit. The up-regulation of RWC3 in upland rice fits well with the knowledge that upland rice adopts the mechanism of drought avoidance. The physiological significance of this RWC3 up-regulation was then explored with the over-expression of RWC3 in transgenic lowland rice (O. sativa L. spp japonica cv. Zhonghua 11) controlled by a stress-inducible SWPA2 promoter. Compared to the wild-type plant, the transgenic lowland rice exhibited higher root osmotic hydraulic conductivity (Lp), leaf water potential and relative cumulative transpiration at the end of 10 h PEG treatment. These results indicated that RWC3 probably played a role in drought avoidance in rice.  相似文献   

3.
4.
The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species   总被引:2,自引:0,他引:2  
Pentavalent methylated arsenic (As) species such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)] are used as herbicides or pesticides, and can also be synthesized by soil microorganisms or algae through As methylation. The mechanism of MMA(V) and DMA(V) uptake remains unknown. Recent studies have shown that arsenite is taken up by rice (Oryza sativa) roots through two silicon transporters, Lsi1 (the aquaporin NIP2;1) and Lsi2 (an efflux carrier). Here we investigated whether these two transporters also mediate the uptake of MMA(V) and DMA(V). MMA(V) was partly reduced to trivalent MMA(III) in rice roots, but only MMA(V) was translocated to shoots. DMA(V) was stable in plants. The rice lsi1 mutant lost about 80% and 50% of the uptake capacity for MMA(V) and DMA(V), respectively, compared with the wild-type rice, whereas Lsi2 mutation had little effect. The short-term uptake kinetics of MMA(V) can be described by a Michaelis-Menten plus linear model, with the wild type having 3.5-fold higher Vmax than the lsi1 mutant. The uptake kinetics of DMA(V) were linear with the slope being 2.8-fold higher in the wild type than the lsi1 mutant. Heterologous expression of Lsi1 in Xenopus laevis oocytes significantly increased the uptake of MMA(V) but not DMA(V), possibly because of a very limited uptake of the latter. Uptake of MMA(V) and DMA(V) by wild-type rice was increased as the pH of the medium decreased, consistent with an increasing proportion of the undissociated species. The results demonstrate that Lsi1 mediates the uptake of undissociated methylated As in rice roots.Arsenic (As) contamination affects millions of people worldwide, particularly in South Asia where As-contaminated groundwater has been extracted for drinking (Chakraborti et al., 2002; Nordstrom, 2002). Recent studies have shown that foods, especially rice (Oryza sativa), are an important source of inorganic As to populations dependent on a rice diet (Kile et al., 2007; Ohno et al., 2007; Mondal and Polya, 2008). Paddy rice is more efficient than other cereal crops in accumulating As (Williams et al., 2007). This is because anaerobic conditions in submerged paddy soils lead to mobilization of arsenite [As(III); Takahashi et al., 2004; Xu et al., 2008], which is then taken up by rice roots mainly through the highly efficient transport pathway for silicon (Si; Ma et al., 2008). The relatively high accumulation of As in rice is of concern, as it may pose a significant health risk (Zhu et al., 2008; Meharg et al., 2009).A number of As species may be present in soil depending on soil conditions and the history of As contamination. These include arsenate [As(V)], As(III), and methylated As species such as monomethylarsonic acid [MMA(V): CH3AsO(OH)2] and dimethylarsinic acid [DMA(V): (CH3)2AsO(OH)]. As(V) is the main species in aerobic soils, while As(III) dominates in anaerobic environments such as flooded paddy soils. Both MMA(V) and DMA(V) have been found in paddy soils (Takamatsu et al., 1982), which may have been derived from microbial and algal biomethylation and/or past uses of methylated As compounds. MMA(V), as sodium or calcium salt, and DMA(V), as sodium salt or free acid (also called cacodylic acid), are herbicides widely used for weed control on cotton (Gossypium hirsutum), orchards, and lawns, or as a defoliant of cotton (U.S. Environmental Protection Agency, 2006). Conversion of cotton fields for the production of paddy rice in the United States may be a reason for the high levels of methylated As reported for the U.S. rice (Meharg et al., 2009).The mechanism of As(V) uptake by plants through the phosphate transport system has been well established (for review, see Zhao et al., 2009). In contrast, As(III) is taken up into the cells by aquaglyceroporins in Escherichia coli, yeast (Saccharomyces cerevisiae), and mammalian tissues (for review, see Bhattacharjee and Rosen, 2007). Recent studies have shown that several plant aquaporin channels belonging to the Nodulin 26-like Intrinsic Protein (NIP) subfamily are permeable to As(III) when expressed heterologously in yeast (Bienert et al., 2008; Isayenkov and Maathuis, 2008; Ma et al., 2008). The rice Si transporter Lsi1 (OsNIP2;1; Ma et al., 2006) is also permeable to As(III) when expressed in yeast or Xenopus laevis oocytes (Ma et al., 2008). Furthermore, the lsi1 rice mutant lost 57% of the influx capacity for As(III) compared to the wild type in short-term assays, suggesting that Lsi1 is an important entry route for As(III) (Ma et al., 2008). In rice roots, a second Si transporter, Lsi2, functions as an efflux carrier to transport Si efflux from the exodermis and endodermis cells toward the stele for xylem loading (Ma et al., 2007). This transporter also mediates As(III) efflux; two independent lsi2 mutants had 73% to 91% lower concentrations of As(III) in the xylem sap than their wild types (Ma et al., 2008). The shared uptake pathway between Si (silicic acid) and As(III) (arsenous acid) is consistent with their physiochemical properties; both are present predominantly as undissociated neutral molecules at the normal environmental and physiological pH range (pKa = 9.2, >99% undissociated at pH ≤ 7.0), and the two molecules have similar sizes.The uptake mechanisms of methylated As species by plant roots are not known. Previous studies showed that both MMA(V) and DMA(V) can be taken up by roots and translocated to shoots in a number of plant species (Marin et al., 1992; Carbonell-Barrachina et al., 1998, 1999; Burló et al., 1999). Marin et al. (1992) found that uptake by rice followed the order of As(III) > MMA(V) > As(V) > DMA (V), although DMA(V) was more efficiently translocated from roots to shoots than other As species. Raab et al. (2007) reported large variations in the absorption and translocation efficiencies for As(V), MMA(V), and DMA(V) among the 46 plant species tested. On average, root absorption of As(V) was 2.5- and 5-times higher than MMA(V) and DMA(V), respectively. The translocation efficiency, defined as the shoot-to-root concentration ratio after 24-h exposure, was highest for DMA(V) (0.8), followed by MMA(V) (0.3) and As(V) (0.09). The concentration-dependent uptake kinetics of MMA(V) in rice roots could be described by the Michaelis-Menten equation, whereas the limited uptake of DMA(V) appeared to be linear in relation to the increasing concentration in the uptake medium (Abedin et al., 2002). Abbas and Meharg (2008) showed that DMA(V) uptake by maize (Zea mays) seedlings was enhanced by more than 10-fold by a pretreatment of phosphorus starvation; this compared with only 2-fold increase in As(V) uptake. They thought that DMA(V) might be taken up by the phosphate transporters, or that phosphorus starvation altered expression of a range of membrane transporters or even membrane permeability itself.In addition to the root uptake of methylated As species, some plants appear to be able to biomethylate As, but the pathway and enzymology remains unclear (Wu et al., 2002; Zhao et al., 2009). In microbes, As methylation follows the Challenger pathway involving repeated steps of As reduction and oxidative methylation (Bentley and Chasteen, 2002). As(V) is first reduced to As(III), which is methylated by S-adenosylmethyltransferase using S-adenosyl-l-Met as the methyl donor. The product of this reaction is pentavalent MMA(V), which is reduced by a reductase to trivalent MMA(III) with thiols (e.g. glutathione). Methylation and reduction steps continue to produce di- and trimethyl As compounds. MMA(III) and DMA(III) are intermediates in the As methylation pathway, which is not very stable (Gong et al., 2001). In rice grain, DMA(V) is the main form of methylated As, and can account for up to 80% of the total As (Zavala et al., 2008; Meharg et al., 2009). In light of the significant presence of methylated As in rice, it is important to elucidate the transport and assimilation pathways of these As species in plants.In this study, we present evidence that MMA(V) and DMA(V) are taken up by rice roots, at least partly, through the NIP aquaporin channel Lsi1, and that this process is strongly pH dependent. We also show that MMA(V) can be reduced to MMA(III) in planta.  相似文献   

5.
6.
水扎蛋白能介导水分的跨膜运输,在植物的生长发育过程中起重要作用.对RWC3启动子-GUS转基因水稻的组织化学染色表明,水稻(Oryza sativa L.)水孔蛋白RWC3可能在包括营养和生殖器官在内的各部位中广泛表达.同是发现,赤霉素(GA)能提高转基因植物的愈伤组织、悬俘细胞和叶片中的GUS活必性,而GA合成的抑制ancymidol降低了GUS活性.进一步研究发现,蔗糖能抑制GA对GUS活性的提高,说明GA和蔗糖在对RWC3表达调控的信号传递过程中可能存在着相互作用.  相似文献   

7.
水稻水孔蛋白RWC3的分布及其受GA和蔗糖的调控(英文)   总被引:3,自引:0,他引:3  
水孔蛋白能介导水分的跨膜运输,在植物的生长发育过程中起重要作用。对RWC3启动子-GUS转基因水稻的组织化学染色表明,水稻(Oryza sativa L.)水孔蛋白RWC3可能在包括营养和生殖器官在内的各部位中广泛表达。同时发现,赤霉素(GA)能提高转基因植物的愈伤组织、悬浮细胞和叶片中的GUS活性,而GA合成的抑制剂ancymidol降低了GUS活性。进一步研究发现,蔗糖能抑制GA对GUS活性的提高,说明GA和蔗糖在对RWC3的表达调控的信号传递过程中可能存在着相互作用。  相似文献   

8.
Water deficit is a serious environmental stress and the major constraint to rice productivity. Losses in rice yield due to water shortage probably exceed losses from all other causes combined and the extent of the yield loss depends on both the severity and duration of the water stress. Drought affects rice at morphological, physiological, and molecular levels such as delayed flowering, reduced dry matter accumulation and partitioning, and decreased photosynthetic capacity as a result of stomatal closure, metabolic limitations, and oxidative damage to chloroplasts. Small-statured rice plants with reduced leaf area and short growth duration are better able to tolerate drought stress, although the mechanisms are not yet fully understood. Increased water uptake by developing larger and deeper root systems, and the accumulation of osmolytes and osmoprotectants are other important mechanisms for drought resistance. Drought resistance in rice has been improved by using plant growth regulators and osmoprotectants. In addition, several enzymes have been found that act as antioxidants. Silicon has also improved drought resistance in rice by silicification of the root endodermis and improving water uptake. Seed priming improves germination and crop stand establishment under drought. Rice plants expressing HVA1, LEA proteins, MAP kinase, DREB and endo-1, 3-glucanase are better able to withstand drought stress. Polyamines and several enzymes act as antioxidants and reduce adverse effects of drought stress in rice. Drought resistance can be managed by developing and selecting drought-tolerant genotypes. Rice breeding and screening may be based on growth duration, root system, photosynthesis traits, stomatal frequency, specific leaf weight, leaf water potential, and yield in target environments. This review discusses recent developments in integrated approaches, such as genetics, breeding and resource management to increase rice yield and reduce water demand for rice production.  相似文献   

9.
10.
ASR(ABA, stress, ripening induced protein)是一类响应植物干旱胁迫的关键转录因子, 在许多植物中已有报道, 然而尚未见香蕉(Musa acuminata)中ASR与抗旱作用的相关研究。该实验从香蕉果实cDNA文库中筛选出1个ASR基因, 即MaASR1(登录号为AY628102)。干旱胁迫下, 该基因在叶片中的表达量高于根部。将MaASR1转入拟南芥(Arabidopsis thaliana), Southern检测确定了两株独立表达的转基因株系(命名为L14和L38)。表型观察发现, 此两转基因株系的叶片变小且变厚; Northern和Western检测结果表明, MaASR1在L14和L38中表达。控水处理后, L14和L38的存活率及脯氨酸含量均高于野生型。经干旱胁迫和外源ABA处理后, 对MaASR1转基因株系中ABA/胁迫响应基因的表达分析, 发现MaASR1可增强转基因株系对ABA信号的敏感度, 但不能增强植株依赖于ABA途径的抗旱性。  相似文献   

11.

Background

Gastric cancer is one of the most common and lethal malignant cancers worldwide, and numerous epidemiological studies have demonstrated that Helicobacter pylori (H. pylori) infection plays a key role in the development of gastric carcinomas. Our previous studies showed that aquaporin 3 (AQP3) is overexpressed in gastric carcinoma and promotes the migration and proliferation of human gastric carcinoma cells, suggesting that AQP3 may be a potentially important determinant of gastric carcinoma. However, the role of AQP3 in H. pylori carcinogenesis is unknown.

Methods

The AQP3 protein and H. pylori were detected in human gastric tissues by immunohistochemistry and modified Giemsa staining respectively. AQP3 knockdown was obtained by small interfering (si) RNA. Western blot assays and RT-PCR were used to evaluate the change of AQP3 in the human gastric cancer AGS and SGC7901 cell lines after co-culture with H. pylori. Sprague Dawley rats were orally inoculated with H. pylori to establish a rat model colonized by H. pylori.

Results

The present study found that AQP3 expression correlated with H. pylori infection status in gastric cancer tissues and corresponding normal mucosa, and H. pylori co-culture upregulated AQP3 expression in human gastric adenocarcinoma cells in vitro via the extracellular signal-regulated kinase signaling pathway. H. pylori infection also increased AQP3 expression in gastric mucosa colonized by H. pylori in a Sprague Dawley rat model.

Conclusions

These findings provide further information to understand the mechanism of H. pylori carcinogenesis and a potential strategy for the treatment of H. pylori-associated gastric carcinoma.  相似文献   

12.
13.
Ma  Chunhui  Li  Mingtong  Yang  Shaolan  Zhang  Xinfu  Zhang  Yong  Qi  Qi  Zhang  Yu  Cheng  Chenxia 《Journal of Plant Growth Regulation》2022,41(6):2570-2578
Journal of Plant Growth Regulation - The hard-end of pear fruit might be a disorder of the environmental abiotic stress, which is mainly caused by the reduced water intake of the fruit resulting...  相似文献   

14.
Late embryogenesis abundant (LEA) proteins are involved in tolerance to drought, cold and high salinity in many different organisms. In this report, a LEA protein producing full-length gene OsLEA3-2 was identified in rice (Oryza sativa) using the Rapid Amplification of cDNA Ends (RACE) method. OsLEA3-2 was found to be only expressed in the embryo and can be induced by abiotic stresses. The coding protein localizes to the nucleus and overexpression of OsLEA3-2 in yeast improved growth performance compared with control under salt- and osmotic-stress conditions. OsLEA3-2 was also inserted into pHB vector and overexpressed in Arabidopsis and rice. The transgenic Arabidopsis seedlings showed better growth on MS media supplemented with 150 mM mannitol or 100 mM NaCl as compared with wild type plants. The transgenic rice also showed significantly stronger growth performance than control under salinity or osmotic stress conditions and were able to recover after 20 days of drought stress. In vitro analysis showed that OsLEA3-2 was able to protect LDH from aggregation on freezing and inactivation on desiccation. These results indicated that OsLEA3-2 plays an important role in tolerance to abiotic stresses.  相似文献   

15.
The complement system is critical for immunity against the important human pathogen Neisseria meningitidis. We describe the isolation of a meningococcal mutant lacking PPX, an exopolyphosphatase responsible for cleaving cellular polyphosphate, a polymer of tens to hundreds of orthophosphate residues found in virtually all living cells. Bacteria lacking PPX exhibit increased resistance to complement-mediated killing. By site directed mutagenesis, we define amino acids necessary for the biochemical activity of meningococcal PPX, including a conserved glutamate (Glu117) and residues in the Walker B box predicted to be involved in binding to phosphate. We show that the biochemical activity of PPX is necessary for interactions with the complement. The relative resistance of the ppx mutant does not result from changes in structures (such as capsule, lipopolysaccharide, and factor H-binding protein), which are known to be required for evasion of this key aspect of host immunity. Instead, expression of PPX modifies the interaction of N. meningitidis with the alternative pathway of complement activation.  相似文献   

16.
In the present paper, we identified and cloned OsDHODH1 encoding a putative cytosolic dihydroorotate dehydrogenase (DHODH) in rice. Expression analysis indicated that OsDHODH1 is upregulated by salt, drought and exogenous abscisic acid (ABA), but not by cold. By prokaryotic expression, we determined the enzymatic activity of OsDHODH1 and found that overproduction of OsDHODH1 significantly improved the tolerance of Escherichia coil cells to salt and osmotic stresses. Overexpression of the OsDHODH1 gene in rice increased the DHODH activity and enhanced plant tolerance to salt and drought stresses as compared with wild type and OsDHODHl-antisense transgenic plants. Our findings reveal, for the first time, that cytosolic dihydroorotate dehydrogenase is involved in plant stress response and that OsDHODH1 could be used in engineering crop plants with enhanced tolerance to salt and drought.  相似文献   

17.
In the present paper, we identified and cloned OsDHODH1 encoding a putative cytosolic dihydroorotate dehydrogenase (DHODH) in rice. Expression analysis indicated that OsDHODH1 is upregulated by salt, drought and exogenous abscisic acid (ABA), but not by cold. By prokaryotic expression, we determined the enzymatic activity of OsDHODH1 and found that overproduction of OsDHODH1 significantly improved the tolerance of Escherichia coli cells to salt and osmotic stresses. Overexpression of the OsDHODH1 gene in rice increased the DHODH activity and enhanced plant tolerance to salt and drought stresses as compared with wild type and OsDHODH1 -antisense transgenic plants. Our findings reveal, for the first time, that cytosolic dihydroorotate dehydrogenase is involved in plant stress response and that OsDHODH1 could be used in engineering crop plants with enhanced tolerance to salt and drought.  相似文献   

18.
Submergence is one of the major constraints in rice production. The main factor limiting rice survival during submergence is oxygen deprivation. To cope with flooding conditions, rice has developed two survival strategies: either rapid elongation of the submerged tissues to keep up with the rising water level or no elongation to save carbohydrate resources for maintenance of energy production under submerged and concomitant hypoxic conditions. The survival strategies used by rice have been studied quite extensively and the role of several phytohormones in the elongation response has been established. The mechanisms of submergence tolerance include metabolic changes, for instance, the shift to an ethanolic fermentation pathway, reduced elongation growth to save carbohydrates and energy for maintenance processes, and protective antioxidant systems. Current molecular technology can provide tools for the understanding of mechanisms developed by rice to survive submergence. In addition, cloning of genes related to submergence tolerance might open new ways to genetic improvement of this crop.  相似文献   

19.
Avoidance behavior is a critical component of many psychiatric disorders, and as such, it is important to understand how avoidance behavior arises, and whether it can be modified. In this study, we used empirical and computational methods to assess the role of informational feedback and ambiguous outcome in avoidance behavior. We adapted a computer-based probabilistic classification learning task, which includes positive, negative and no-feedback outcomes; the latter outcome is ambiguous as it might signal either a successful outcome (missed punishment) or a failure (missed reward). Prior work with this task suggested that most healthy subjects viewed the no-feedback outcome as strongly positive. Interestingly, in a later version of the classification task, when healthy subjects were allowed to opt out of (i.e. avoid) responding, some subjects (“avoiders”) reliably avoided trials where there was a risk of punishment, but other subjects (“non-avoiders”) never made any avoidance responses at all. One possible interpretation is that the “non-avoiders” valued the no-feedback outcome so positively on punishment-based trials that they had little incentive to avoid. Another possible interpretation is that the outcome of an avoided trial is unspecified and that lack of information is aversive, decreasing subjects’ tendency to avoid. To examine these ideas, we here tested healthy young adults on versions of the task where avoidance responses either did or did not generate informational feedback about the optimal response. Results showed that provision of informational feedback decreased avoidance responses and also decreased categorization performance, without significantly affecting the percentage of subjects classified as “avoiders.” To better understand these results, we used a modified Q-learning model to fit individual subject data. Simulation results suggest that subjects in the feedback condition adjusted their behavior faster following better-than-expected outcomes, compared to subjects in the no-feedback condition. Additionally, in both task conditions, “avoiders” adjusted their behavior faster following worse-than-expected outcomes, and treated the ambiguous no-feedback outcome as less rewarding, compared to non-avoiders. Together, results shed light on the important role of ambiguous and informative feedback in avoidance behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号