共查询到20条相似文献,搜索用时 0 毫秒
1.
Habas R 《Developmental cell》2006,11(2):138-139
Canonical Wnt signaling, below the Fz/LRP receptor complex, induces the stabilization of beta-catenin via an unresolved mechanism. A recent study in Genes & Development introduces a new player and deepens our understanding of this signaling relay that plays pivotal roles during embryogenesis and tumorigenesis. 相似文献
2.
Joachim Albers Johannes Keller Anke Baranowsky Frank Timo Beil Philip Catala-Lehnen Jochen Schulze Michael Amling Thorsten Schinke 《The Journal of cell biology》2013,200(4):537-549
Although Wnt signaling is considered a key regulatory pathway for bone formation, inactivation of β-catenin in osteoblasts does not affect their activity but rather causes increased osteoclastogenesis due to insufficient production of osteoprotegerin (Opg). By monitoring the expression pattern of all known genes encoding Wnt receptors in mouse tissues and bone cells we identified Frizzled 8 (Fzd8) as a candidate regulator of bone remodeling. Fzd8-deficient mice displayed osteopenia with normal bone formation and increased osteoclastogenesis, but this phenotype was not associated with impaired Wnt signaling or Opg production by osteoblasts. The deduced direct negative influence of canonical Wnt signaling on osteoclastogenesis was confirmed in vitro and through the generation of mice lacking β-catenin in the osteoclast lineage. Here, we observed increased bone resorption despite normal Opg production and a resistance to the anti-osteoclastogenic effect of Wnt3a. These results demonstrate that Fzd8 and β-catenin negatively regulate osteoclast differentiation independent of osteoblasts and that canonical Wnt signaling controls bone resorption by two different mechanisms. 相似文献
3.
Wnt signaling plays important roles in skeletal development. However, the activation and function of canonical Wnt signaling
in joint development remains unclear. We analyzed the lineage identity and developmental changes of the Wnt-responsive cells
during synovial joint formation as well as adulthood in the Wnt signaling reporter TOPgal transgenic mice. At embryonic day
(E) 12.5, we found that the TOPgal was inactivated in the presumptive joint forming interzone, but it was intensively activated
in the cartilage anlage of developing long bones and digits. At E14.5, the TOPgal activity was found in a subgroup of the
articular chondrocyte lineage cells, which were co-immunolabeled with Doublecortin intensively and with Vinculin weakly. At
E18.5, the TOPgal/Doublecortin co-immunolabeled cells were found in the superficial layer of the developing articular cartilage.
During postnatal development, the TOPgal(+) articular chondrocytes were abundant at P7 and decreased from P10. A small number
of TOPgal(+) articular chondrocytes were also found in adult joints. Our study suggests an age- and lineage-specific role
of canonical Wnt signaling in joint development and maintenance. 相似文献
4.
Major biological effects of estrogen in the uterus are thought to be primarily mediated by nuclear estrogen receptors, ERalpha and ERbeta. We show here that estrogen in an ER-independent manner rapidly up-regulates the expression of Wnt4 and Wnt5a of the Wnt family and frizzled-2 of the Wnt receptor family in the mouse uterus. One of the mechanisms by which Wnts mediate canonical signaling involves stabilization of intracellular beta-catenin. We observed that estrogen treatment prompts nuclear localization of active beta-catenin in the uterine epithelium. We also found that adenovirus mediated in vivo delivery of SFRP-2, a Wnt antagonist, down-regulates estrogen-dependent beta-catenin activity without affecting some of the early effects (water imbibition and angiogenic markers) and inhibits uterine epithelial cell growth, suggesting that canonical Wnt signaling is critical to estrogen-induced uterine growth. Our present results provide evidence for a novel role of estrogen that targets early Wnt/beta-catenin signaling in an ER-independent manner to regulate the late uterine growth response that is ER dependent. 相似文献
5.
Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation 总被引:15,自引:0,他引:15
Glass DA Bialek P Ahn JD Starbuck M Patel MS Clevers H Taketo MM Long F McMahon AP Lang RA Karsenty G 《Developmental cell》2005,8(5):751-764
Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis. 相似文献
6.
7.
MO Trowe R Airik AC Weiss HF Farin AB Foik E Bettenhausen K Schuster-Gossler MM Taketo A Kispert 《Development (Cambridge, England)》2012,139(17):3099-3108
Smooth muscle cells (SMCs) are a key component of many visceral organs, including the ureter, yet the molecular pathways that regulate their development from mesenchymal precursors are insufficiently understood. Here, we identified epithelial Wnt7b and Wnt9b as possible ligands of Fzd1-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated ureteric mesenchyme. Mice with a conditional deletion of Ctnnb1 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional obstruction of the ureter. Histological analysis revealed that the layer of undifferentiated mesenchymal cells directly adjacent to the ureteric epithelium did not undergo characteristic cell shape changes, exhibited reduced proliferation and failed to differentiate into SMCs. Molecular markers for prospective SMCs were lost, whereas markers of the outer layer of the ureteric mesenchyme fated to become adventitial fibroblasts were expanded to the inner layer. Conditional misexpression of a stabilized form of Ctnnb1 in the prospective ureteric mesenchyme resulted in the formation of a large domain of cells that exhibited histological and molecular features of prospective SMCs and differentiated along this lineage. Our analysis suggests that Wnt signals from the ureteric epithelium pattern the ureteric mesenchyme in a radial fashion by suppressing adventitial fibroblast differentiation and initiating smooth muscle precursor development in the innermost layer of mesenchymal cells. 相似文献
8.
9.
10.
11.
12.
Key gene families such as FGFs and BMPs are important mediators of branching morphogenesis. To understand whether Wnt genes, and in particular, the canonical Wnt signaling pathway also function in the branching process, we have used a combination of experimental and genetic gain and loss of function approaches to perturb the levels of canonical Wnt signaling in two arborized structures, the lung and the lacrimal gland. Here, we show that the addition of Wnt3a conditioned medium or LiCl strongly represses growth and proliferation of the lung and lacrimal gland, a result that was confirmed in vivo using a dominant stable mutation of beta-catenin conditionally expressed in the lacrimal gland epithelium. In agreement with these data, knockdown of Wnt signaling with beta-catenin morpholinos results in a greater number of branches and increased cell proliferation. In addition, we show that canonical Wnt signaling is able to modulate the levels of Fgf10 and suppress BMP-induced proliferation in the lacrimal gland. Thus, canonical Wnt signaling negatively regulates branching morphogenesis providing a balance to FGFs and BMPs which positively regulate this process. This multilayered control of growth and proliferation ensures that branched structures attain the morphology required to function efficiently. 相似文献
13.
Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm 总被引:1,自引:0,他引:1
Lindsley RC Gill JG Kyba M Murphy TL Murphy KM 《Development (Cambridge, England)》2006,133(19):3787-3796
Formation of mesoderm from the pluripotent epiblast depends upon canonical Wnt/beta-catenin signaling, although a precise molecular basis for this requirement has not been established. To develop a robust model of this developmental transition, we examined the role of Wnt signaling during the analogous stage of embryonic stem cell differentiation. We show that the kinetics of Wnt ligand expression and pathway activity in vitro mirror those found in vivo. Furthermore, inhibition of this endogenous Wnt signaling abrogates the functional competence of differentiating ES cells, reflected by their failure to generate Flk1(+) mesodermal precursors and subsequent mature mesodermal lineages. Microarray analysis at various times during early differentiation reveal that mesoderm- and endoderm-associated genes fail to be induced in the absence of Wnt signaling, indicating a lack of germ layer induction that normally occurs during gastrulation in vivo. The earliest genes displaying Wnt-dependent expression, however, were those expressed in vivo in the primitive streak. Using an inducible form of stabilized beta-catenin, we find that Wnt activity, although required, does not autonomously promote primitive streak-associated gene expression in vitro. Our results suggest that Wnt signaling functions in this model system to regulate the thresholds or stability of responses to other effector pathways and demonstrate that differentiating ES cells represent a useful model system for defining complex regulatory interactions underlying primary germ layer induction. 相似文献
14.
15.
Tobias Bohnenpoll Mark-Oliver Trowe Irina Wojahn Makoto Mark Taketo Marianne Petry Andreas Kispert 《Developmental biology》2014
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development. 相似文献
16.
Clevers H 《Current biology : CB》2004,14(11):R436-R437
Secreted Wnt proteins trigger the intracellular Wnt signaling cascade upon engagement of dedicated Frizzled-Lrp receptor complexes. Unexpectedly, a non-Wnt ligand for this receptor complex has now been discovered. This novel ligand, Norrin, is mutated in the hereditary ocular Norrie syndrome. 相似文献
17.
The vertebrate body forms in an anterior-to-posterior progression, driven by a population of undifferentiated cells at the posterior-most end of the embryo. Recent studies have demonstrated that these undifferentiated cells are multipotent stem cells, suggesting that local signaling factors specify cell fate. However, the mechanism of cell fate specification during this process is unknown. Using a combination of single cell transplantation and newly developed cell-autonomous inducible Wnt inhibitor and activator transgenic zebrafish lines, we show that canonical Wnt signaling is continuously necessary and sufficient to specify mesoderm from a bipotential neural/mesodermal precursor. Surprisingly, we also find that Wnt signaling functions subsequently within the mesoderm to specify somites instead of posterior vascular endothelium. Our results demonstrate that dynamic local Wnt signaling cues specify germ layer contribution and mesodermal tissue type specification of multipotent stem cells throughout the formation of the early vertebrate embryonic body. 相似文献
18.
19.