首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the binding characteristics of [3H]Delta(5)-androstene-3beta,17beta-diol to rabbit vaginal cytosolic and nuclear extracts and in freshly excised intact tissue strips. [3H]delta(5)-Androstene-3beta,17beta-diol bound to a protein(s) in the vaginal nuclear extract with high affinity (K(d)=3-5 nM) and limited capacity (50-100 fmol/mg protein). No specific binding was detected in the cytoplasmic extracts. Competitive binding studies showed that binding of [3H]delta(5)-androstene-3beta,17beta-diol was effectively displaced with unlabeled delta(5)-androstene-3beta,17beta-diol but not with dehydroepiandrosterone, testosterone, dihydrotestosterone, triamcinolone acetonide, or progesterone. However, estradiol at high concentrations partially displaced bound [3H]delta(5)-androstene-3beta,17beta-diol. Incubation of freshly excised vaginal tissue strips with [3H]delta(5)-androstene-3beta,17beta-diol in the absence or presence of excess unlabeled delta(5)-androstene-3beta,17beta-diol for 1h at 37 degrees C resulted in specific binding to a soluble macromolecule in the nuclear KCl extracts. In addition, quantitative measurement of estrogen receptor, androgen receptor and delta(5)-androstene-3beta,17beta-diol binding protein was performed by equilibrium ligand binding assays using extracts of distal vaginal tissue from intact animals or ovariectomized animals treated for 2 weeks with vehicle, estradiol, testosterone, or estradiol plus testosterone. These changes in steroid hormone levels resulted in opposing trends between the estrogen receptor and delta(5)-androstene-3beta,17beta-diol binding protein, suggesting that delta(5)-androstene-3beta,17beta-diol binding protein is regulated differently by the hormonal milieu than the estrogen receptor. These data suggest that rabbit vaginal tissue expresses a novel binding protein which specifically binds delta(5)-androstene-3beta,17beta-diol and is distinct from the androgen and estrogen receptors.  相似文献   

2.
In embryos of many reptiles, the sexual differentiation of gonads is temperature-dependent. In the turtle Emys orbicularis, all individuals become phenotypic males at 25 degrees C, whereas 100% phenotypic females are obtained at 30 degrees C. Steroid metabolism in embryonic gonads was studied at both temperatures, during and after the thermosensitive period for sexual differentiation. Pools of gonads were incubated for various times, with 3 beta-hydroxy-5-pregnen-20-one (pregnenolone), progesterone, dehydroepiandrosterone or 4-androstene-3,17- dione as substrates. The analysis of metabolites combined two successive chromatographies (HPLC and TLC) and autoradiography. Conversion of pregnenolone to progesterone and of dehydroepiandrosterone to 4-androstene-3,17-dione was more important in testes at 25 degrees C than in ovaries at 30 degrees C. In ovaries, a large amount of 5-pregnene- 3 beta,20 beta-diol was formed from pregnenolone, and 5-androstene-3 beta,17 beta-diol was produced from dehydroepiandrosterone. In both testes and ovaries, 5 alpha-pregnane and 5 alpha-androstane derivatives were the main metabolites obtained from progesterone and 4-androstene-3,17-dione, respectively. Progesterone was also converted to 20 beta-hydroxy-4-pregnen-3-one. Dehydroepiandrosterone and 4-androstene-3,17-dione were also metabolized into 11 beta-hydroxy-4-androstene-3,17-dione (only in testes), testosterone, 11 beta,17 beta-dihydroxy-4-androstene-3-one, 17 beta-hydroxy-4-androstene-3,11-dione (low amounts in testes, traces in ovaries), 17 alpha-hydroxy-4-androstene-3-one, estrone and estradiol-17 beta (traces).  相似文献   

3.
The following steroids have been identified by combined gas chromatography-mass spectrometry in a urine specimen collected from a newborn chimpanzee; 5-androstene-3β, 17α-diol, 3β,16α (and 16β)-dihydroxy-5-androsten-17-one, 5-androstene-3β, 16α, 17β-triol, 5-androstene-3β, 16β, 17α-triol, 5-pregnene-3β, 20α-diol, 5-pregnene-3β, 20α, 21-triol, 3β,21-dihydroxy-5-pregnen-20-one, 3β, 16α-dihydroxy-5-pregnen-20-one, 5-Piegnene-3β, 16α,20α, 21-tetrol, 5-pregnene-3β,17α, 20ξ, 21-tetrol androstenetriolones and androstenetetrols.  相似文献   

4.
Epidemiological studies suggest that precursor steroids are implicated in the aetiology of breast cancer. However, our understanding of the role of precursor steroids in breast cancer is complicated by fact that there are many precursor steroids, which are metabolically inter-related and have divergent proliferative activities on the growth of breast cancer cell lines. In this study the proliferative affects of 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol, which may be considered true metabolites acting at a tissue level, on MCF7, T47D and MDAMB231 breast cancer cell lines have been examined by a flow cytometric technique. DNA cell cycle analysis demonstrates that 5-androstene-3 beta,17 beta-diol stimulates the proliferation of hormone-dependent cell lines at physiological levels by an oestrogen receptor mediated mechanism whereas 5 alpha-dihydrotestosterone does not affect the proliferation of MCF7 and T47D cell lines at physiological levels over short (48 h) incubations. Both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol stimulate proliferation of hormone-dependent cell lines at pharmacological levels via and interaction with the oestrogen receptor. In long (6-9 days) incubations both 5 alpha-dihydrotestosterone and 5-androstene-3 beta,17 beta-diol inhibit the 17 beta-oestradiol induced proliferation of MCF7 and T47D cell lines, however, 5 alpha-dihydrotestosterone inhibits while 5-androstene-3 beta,17 beta-diol stimulates basal proliferation. These cell line studies suggest a model for the role of precursor steroids in pre- and postmenopausal breast cancer.  相似文献   

5.
After incubation of 3beta-hydroxy-5-[17,21,21,21-2H]-pregnen-20-one with the microsomal fraction of boar testis, the metabolites were analyzed by gas chromatography and gas chromatography-mass spectrometry. The following metabolites were identified: 3beta,17alpha-dihydroxy-5-[21,21,21-3H]pregnen-20-one, 3beta-hydroxy-5-androsten-17-one, 5-androstene-3beta,17beta-diol, and 5-[17beta-2H]androstene-3beta,17alpha-diol. The presence of a 2H atom at the 17beta position of 5-androstene-3beta,17alpha-diol was confirmed by oxidizing the steroid with 3beta-hydroxy-steroid dehydrogenase of Pseudomonas testosteroni to obtain 17alpha-hydroxy-4-[2H]androsten-3-one and then by oxidizing the latter steroid with chromic acid to obtain nonlabeled 4-androstene-3,17-dione. Among these metabolites, the first three can be interpreted to be synthesized by a well documented pathway, including 17alpha-hydroxylation followed by side chain cleavage as follows: 3beta-hydroxy-5-[17,21,21,21-2H]pregnen-20-one leads to 3beta,17alpha-dihydroxy-2-[21,21,212H]-pregnen-20-one leads to 3beta-hydroxy-5-androsten-17-one leads to 5-androstene-3beta,17beta-diol. On the other hand, 5-androstene-3beta,17alpha-diol, which contained a 2H atom at the 17beta position, is not likely to be synthesized via above mentioned pathway in which nonlabeled 3beta-hydroxy-5-androsten-17-one is formed as the first C19-steroid. It seems that an alternate side chain cleavage mechanism leading from pregnenolone to 17alpha-hydroxy-C19-steroid exists in boar testis.  相似文献   

6.
The insert of 1278 bp containing the entire coding region of cDNA encoding human 17β-hydroxysteroid dehydrogenase (17β-HSD) was inserted into a pHS1 vector and expressed in HeLA human cervical carcinoma cells and COS-1 monkey kidney tumor cells. Western blot analysis indicated that the expressed protein migrates at the same position as the purified enzyme and is recognized by the antibody raised against purified human placental 17β-HSD. The expressed enzyme efficiently catalyzes the interconversion of estrone and estradiol while dehydroepiandrosterone and 5-androstene-3β,17β-diol are interconverted at a lower rate. The present data suggest the existence of two 17β-HSDs.  相似文献   

7.
J C Coffey  T E Harvey  W L Carr 《Steroids》1979,33(2):223-232
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of male and female rats. The metabolism was predominately reductive. In 15 and 180 min incubations submaxillary tissue converted 4-androstene-3,17-dione chiefly to androsterone. Less testosterone, 17 beta-hydroxy-5 alpha-androstan-3-one, 5 alpha-androstane-3,17-dione, 5 alpha-androstane-3 alpha, 17 beta-diol, and 4-androstene-3 alpha, 17 beta-diol were also identified. Testosterone was converted to the same products plus 4-androstene-3,17-dione. 5 alpha-Androstane-3 alpha, 17 beta-diol was the major testosterone metabolite. Qualitatively the metabolism by male and female submaxillary gland was similar.  相似文献   

8.
The hydrolysis of steroid sulphates, by steroid sulphatase, is an important source of oestrogenic steroids (oestrone, oestradiol and 5-androstene-3β,17β-diol) which are found in tumours. In the present study, we have examined the effect of dehydroepiandrosterone-3-O-methylthiophosphonate (DHA-3-MTP), pregnenolone-3-O-methylthiophosphonate (pregnenolone-3-MTP) and cholesterol-3-O-methylthiophosphonate (cholesterol-3-MTP) on the inhibition of oestrone sulphatase as well as DHA sulphatase activities in intact MCF-7 breast cancer cells and in placental microsomes. All three methylthiophosphonates significantly (P< 0.01) inhibited the hydrolysis of oestrone sulphate (E1 S) in intact MCF-7 cells (31–85% inhibition at 1 μM and 53–97% inhibition at 10 μM). Significant inhibition of DHA sulphatase was also achieved. At a concentration of 50 μM, all three compounds inhibited the hydrolysis of dehydroepiandrosterone sulphate (DHAS) by > 95%. Using human placental microsomes, the Km and Vmax of E1S were determined to be 8.1 μM and 43 nmol/h/mg protein. The corresponding Ki values for DHA-3-MTP, pregnenolone-3-MTP and cholesterol-3-MTP were found to be 4.5, 1.4 and 6.2 μM, respectively. Such inhibitors which are resistant to metabolism may have considerable potential as therapeutic agents and may have additional advantage over aromatase inhibitors in also reducing tumour concentrations of the oestrogenic steroid, 5-androstene-3β,17β-diol, by inhibiting the hydrolysis of DHAS.  相似文献   

9.
A novel synthesis of 16α-hydroxy-4-androstene-3,17-dione (3), 16α-hydroxy-4-androstene-3, 6,17-trione (4), 17β-amino-5-androsten-3β-ol (10) and 17β-amino-4-androsten-3-one (14) is described. 16α-Bromoacetoxy-4-androstene-3, 17-dione (5), 16α-bromoacetoxy-4-androstene-3, 6,17-trione (6) and 17β-bromoacetylamino-4-androsten-3-one (15) were synthesized as potentially selective irreversible inhibitors of androgen aromatases. 16α-Bromo-4-androstene-3,17-dione (1) and 16α-bromo-4-androstene-3, 6,17-trione (2) were converted to compounds 3 and 4 in 80–90% yield by controlled stereospecific hydrolysis using sodium hydroxide in aqueous pyridine. Reductive amination of 3β-hydroxy-5-androsten-17-one and 3-methoxy-3,5-androstadien-17-one (11) using ammonium acetate and sodium cyanohydridoborate (NaBH3CN) and a subsequent treatment with acid gave the amines 10 and 14 respectively, as a salt. The corresponding 17-imino compounds 9 and 13 were also isolated from the reaction mixtures when methanol was used as a solvent for the reaction. The 16α-hydroxyl compounds 3 and 4 and the 17β-amino compound 14 were con- verted to the corresponding bromoacetyl derivatives, 5, 6, and 15, with bromoacetic acid and N,N'-dicyclohexylcarbodiimide.  相似文献   

10.
M Numazawa  Y Osawa 《Steroids》1979,34(3):347-360
The synthesis of epimeric 6-bromo-4-androstene-3,17-dione (1a and 1b), 6-bromotestosterone (2a and 2b) and its acetate (3a and 3b), and 6-bromo-16 alpha-acetoxy-4-androstene-3,17-dione (5a and 5b), and 6 beta-bromo-16 alpha-hydroxy-4-androstene-3,17-dione (4) is described. The interconversions among compounds 1, 2, and 3 are also studied. The 6 beta-isomer (1b, 2b, and 3b) was epimerized to the 6 alpha-isomer (1a, 2a and 3a) in carbon tetrachloride or chloroform-methanol (9:1) and the 6 alpha-isomer was isolated by fractional crystallization from the epimeric mixture. 6 alpha-Bromo isomer 1a was also epimerized back to 6 beta-bromo isomer 1b in chloroform-methanol (9:1). Two polymorphic forms of 6 beta-bromotestosterone acetate (3b) were isolated (mp. 114--117 degrees and 138--141 degrees). The 6 beta-bromo isomers were found to be unstable in methanol and decomposed to give 5 alpha-androstane-3,6-dione derivative (6). The results of irreversible inactivation of human placental androgen aromatase with some of these 6-bromoandrogens are discussed.  相似文献   

11.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

12.
The isomerization of 5-androstene-3,17-dione and 17β-hydroxy-5-androstene-3-one to 4-androstene-3,17-dione and 17β-hydroxy-4-androstene-3-one, respectively, is catalyzed by primary amines. In the case of the isomerization catalyzed by glycylglycine the reaction proceeds through an intermediate which absorbs maximally at 275 nm. Based on spectral similarities to appropriate model compounds and structural analysis of the intermediate after its reduction by sodium borohydride, the intermediate has been tentatively identified as the Δ4-3-imine.  相似文献   

13.
The success in synthesis of [3H]5-androstene-3,17-dione, the intermediate product in the transformation of DHEA to 4-androstenedione by 3β-hydroxysteroid dehydrogenase/ 5-ene→4-ene isomerase (3β-HSD) offers the opportunity to determine whether or not the two activities reside in one active site or in two closely related active sites. The finding that N,N-dimethyl-4-methyl-3-oxo-4-aza-5-androstane-17β-carboxamide (4-MA) inhibits competitively and specifically the dehydrogenase activity whereas a non-competitive inhibition type with a Ki value 1000 fold higher was observed for the isomerase activity, indicated that dehydrogenase and isomerase activities belong to separate sites. Using 5-dihydro-testosterone and 5-androstane-3β,17β-diol, exclusive substrates for dehydrogenase activity, it was shown that dehydrogenase is reversible and strongly inhibited by 4-MA and that thus the irreversible step in the transformation of DHEA to 4-androstenedione is due to the isomerase activity.  相似文献   

14.
The 7α-ethyl,propyl,butyl,3'-t-butoxypropyl, allyl,3'-hydroxypropyl 17-acetate, and 3'-chloropropyl 17-acetate derivatives of testosterone and the 7α-3'-t-butoxypropyl,3'-hydroxypropyl,3'-acetoxypropyl, 3'-bromoacetoxypropyl,3'-chloropropyl, and 2'-oxo-3'-bromopropyl derivatives of 4-androstene-3,17-dione were synthesized. The testosterone derivatives were found to lose androgenic and anabolic activity rapidly as the size of the group at the 7 position increased. Many of the compounds were tested as inhibitors of aromatase. The 17-keto compounds were more active than the corresponding alcohols and the enzyme was found to tolerate at least the bulk of a hydroxypropyl group at the C-7α position.  相似文献   

15.
Liu HM  Li H  Shan L  Wu J 《Steroids》2006,71(11-12):931-934
The biotransformations of a series of steroids by the fungus penicillium citreo-viride A.C.C.C. 0402 have been investigated, and the conversion to the same product testolactone (1) was observed from progesterone (2), dehydroepiandrosterone (3), 4-androstene-3, 17-dione (4), 5-androstene-3, 17-diol (5) with the exception of pregnenolone (6) and 3beta-hydroxy-5, 16-pregnadien-20-one (7). The possible metabolic pathways of the biotransformations were also discussed in the paper and the fungus penicillium citreo-viride A.C.C.C. 0402 was isolated during screening stains from samples collected from Zhengzhou, Henan province of China.  相似文献   

16.
The introduction of a 16 alpha-hydroxyl function into the steroid nucleus was studied in resting cells of Streptomyces roseochromogenes NRRL B-1233. The oxidation product of dehydroepiandrosterone (DHEA) was identified as 16 alpha-hydroxy DHEA by using thin-layer and gas-liquid chromatography. A linear relation between cell concentration and 16 alpha-OH-DHEA formation was observed. 16 alpha-Hydroxylase showed good activity at pH 8.0 for 16 alpha-OH-DHEA formation. The enzyme showed good activity at 3.1 x 10(-4) M DHEA. The oxidation products of pregnenolone, 4-androstene-3,17-dione, estrone, and 5-androstene-3 beta,17 beta-diol as well as of other substrates were identified as the 16 alpha-hydroxy steroid, respectively. The rates of microbial 16 alpha-hydroxylation were as follows: 76.9% for DHEA, 50.4% for pregnenolone, 43.9% for 4-androstene-3,17-dione, 34.3% for estrone, and 19.6% for 5-androstene-3 beta,17 beta-diol. The organism tested catalyzes 16 alpha-hydroxylation of a wide variety of steroids.  相似文献   

17.
Microsomal fractions obtained from testes of 3-week-old piglets have been incubated, separately, with progesterone, 17-hydroxyprogesterone, 5-pregnene-3 beta,20 beta-diol, 16 alpha-hydroxypregnenolone, 5-androstene-3 beta,17 alpha-diol and dehydro-epiandrosterone. The metabolites, after derivatization, have been separated by capillary gas chromatography and identified by mass spectrometry. Quantification was by selected ion monitoring. Progesterone was shown to be 17-hydroxylated and also converted into 4,16-androstadien-3-one (androstadienone). The major metabolite of 17-hydroxyprogesterone was 4-androstene-3,17-dione (4-androstenedione), but little, if any, androstadienone was formed, indicating that this particular biosynthesis did not require 17-hydroxylation. The metabolites of 5-pregnene-3 beta, 20 beta-diol were found to be 17-hydroxypregnenolone, 3 beta-hydroxy-5,16-pregnadien-20-one (16-dehydropregnenolone) and 5,16-androstadien-3 beta-ol. Dehydroepiandrosterone and 5-androstene-3 beta,17 alpha-diol were interconvertible but neither steroid acted as a substrate for 16-androstene formation. However, dehydroepiandrosterone was metabolized to a small quantity of 4-androstenedione. Under the conditions used, no metabolites of 16 alpha-hydroxypregnenolone could be detected. The present results, together with those obtained earlier, indicate that the neonatal porcine testis has the capacity to synthesize weak androgens, mainly by the 4-en-3-oxo steroid pathway. Although 16-androstenes cannot be formed from C19 steroids, progesterone served as a substrate and may be converted directly to androstadienone, without being 17-hydroxylated first. The pathway to 5,16-androstadien-3 beta-ol, however, involves 17-hydroxypregnenolone and 16-dehydropregnenolone as intermediates.  相似文献   

18.
H Kohara 《Steroids》1988,52(3):295-309
A microsomal fraction of testicular tissue from a patient with prostatic carcinoma was incubated with [4-14C]pregnenolone in the presence of an NADPH-generating system for different periods of time. The metabolites were separated by Sephadex LH-20 column chromatography and then identified by thin-layer chromatography, radio-gas chromatography, and crystallization studies. Pregnenolone was converted to a major metabolite, 5-androstene-3 beta,17 beta-diol via 17-hydroxypregnenolone and then dehydroepiandrosterone. Another major metabolite was 5,16-androstadien-3 beta-ol, which increased with the time of incubation and accumulated in the incubation medium. After 120 min of incubation, 34.6% of the precursor was converted to 5-androstene-3 beta,17 beta-diol and 15.1% to 5,16-androstadien-3 beta-ol. In addition to the above-mentioned steroids, 16 alpha-hydroxypregnenolone, 5-pregnene-3 beta,20 alpha-diol, and 5-androstene-3 beta,17 alpha-diol were identified as minor metabolites of pregnenolone. From these results it was concluded that human testicular microsomes possess enzymic activities for the synthesis of 5,16-androstadien-3 beta-ol, as well as androgens from pregnenolone.  相似文献   

19.
Rat liver glutathione S-transferase, isozyme 1-1, catalyzes the glutathione-dependent isomerization of Delta(5)-androstene-3,17-dione and also binds steroid sulfates at a nonsubstrate inhibitory steroid site. 17beta-Iodoacetoxy-estradiol-3-sulfate, a reactive steroid analogue, produces a time-dependent inactivation of this glutathione S-transferase to a limit of 60% residual activity. The rate constant for inactivation (k(obs)) exhibits a nonlinear dependence on reagent concentration with K(I) = 71 microm and k(max) = 0.0133 min(-1). Complete protection against inactivation is provided by 17beta-estradiol-3,17-disulfate, whereas Delta5-androstene-3,17-dione and S-methylglutathione have little effect on k(obs). These results indicate that 17beta-iodoacetoxy-estradiol-3-sulfate reacts as an affinity label of the nonsubstrate steroid site rather than of the substrate sites occupied by Delta5-androstene-3,17-dione or glutathione. Loss of activity occurs concomitant with incorporation of about 1 mol 14C-labeled reagent/mol enzyme dimer when the enzyme is maximally inactivated. Isolation of the labeled peptide from the chymotryptic digest shows that Cys(17) is the only enzymic amino acid modified. Covalent modification of Cys(17) by 17beta-iodoacetoxy-estradiol-3-sulfate on subunit A prevents reaction of the steroid analogue with subunit B. These results and examination of the crystal structure of the enzyme suggest that the interaction between the two subunits of glutathione S-transferase 1-1, and the electrostatic attraction between the 3-sulfate of the reagent and Arg(14) of subunit B, are important in binding steroid sulfates at the nonsubstrate steroid binding site and in determining the specificity of this affinity label.  相似文献   

20.
A strictly anaerobic gram-positive coccus, identified as Peptococcus niger, that developed sulfatase activity towards steroid-3-sulfate esters was isolated from human fecal material. This strain desulfated the arylsulfate esters estrone-3-sulfate (100%) and beta-estradiol-3-sulfate (50%); only trace amounts of desulfated estriol-3-sulfate were found. In addition, alkylsulfatase activity was found towards the 3 alpha-sulfates of 5 alpha-androstane-17-one and 5 beta-androstane-17-one and towards the 3 beta-sulfates of 5 alpha-androstane-17-one, delta 5-androstene-17-one, 5 alpha-pregnane-20-one, and delta 5-pregnene-20-one, all of which were 100% desulfated. No sulfatase activity was found towards the 17-sulfate esters of beta-estradiol or delta 4-androstene-3-one-17 alpha-ol. The nonsteroid arylsulfate esters paranitrophenyl sulfate, paranitrocatechol sulfate, and phenolphthalein disulfate were desulfated 70, 40, and 40%, respectively. In addition to its sulfatase activity, this strain also developed C-17 oxidoreductase activity towards the estrogens and androsta(e)nes and C-3 oxidoreductase activity towards androsta(e)nes and pregna(e)nes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号