首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Hereditary nonchromaffin paragangliomas (PGL; glomus tumors; MIM 168000) are mostly benign, slow-growing tumors of the head and neck region, inherited from carrier fathers in an autosomal dominant fashion subject to genomic imprinting. Genetic linkage analysis in two large, unrelated Dutch families assigned PGL loci to two regions of chromosome 11, at 11q23 (PGL1) and 11q13.1 (PGL2). We ascertained a total of 11 North American PGL families and confirmed maternal imprinting (inactivation). In three of six families, linkage analysis provided evidence of linkage to the PGL1 locus at 11q23. Recombinants narrowed the critical region to an approximately 4.5-Mb interval flanked by markers D11S1647 and D11S622. Partial allelic loss of strictly maternal origin was detected in 5 of 19 tumors. The greatest degree of imbalance was detected at 11q23, distal to D11S1327 and proximal to CD3D. Age at onset of symptoms was significantly different between fathers and children (Wilcoxon rank-sum test, P < .002). Affected children had an earlier age at onset of symptoms in 39 of 57 father-child pairs (chi2 = 7.74, P < .006). However, a more conservative comparison of the number of pairs in which a child had > or = 5 years earlier age at onset (n = 33) vis-a-vis that of complementary pairs (n = 24) revealed no significant difference (chi2 = 1.42, P > .2). Whether these data represent genetic anticipation or ascertainment bias can be addressed only by analysis of a larger number of father-child pairs.  相似文献   

3.
Fine mapping of the schizophrenia susceptibility locus on chromosome 1q22   总被引:6,自引:0,他引:6  
Schizophrenia is a serious neuropsychiatric illness estimated to affect approximately 1% of the general population. As part of a genome scan for schizophrenia susceptibility loci, we have previously reported a maximum heterogeneity four-point lod score of 6.50 on chromosome 1q21-22 in a group of 22 medium-sized Canadian families, selected for study because multiple relatives were clinically diagnosed with schizophrenia or schizoaffective disorder. We have now conducted fine mapping of this locus in the same set of individuals using 15 genetic markers spanning an approximately 15-cM interval. Parametric linkage analysis with GENEHUNTER v2.1 and VITESSE v2.0 produced a maximum multipoint heterogeneity lod score of 6.50, with a Zmax-1 support interval of <3 cM, corresponding to approximately 1 Mb. Physical mapping and sequence analysis from this region confirmed the presence of an approximately 81-kb tandem duplication, containing low-affinity IgG receptor genes and heat shock protein genes. The sequences of the two copies of this duplication are approximately 97% identical, which has led to the collapse of the two copies into one in the June 2002 NCBI Build 30 of the Human Genome. This duplication may be involved in genomic instability, leading to gene deletion, and so presents an intriguing candidate locus for schizophrenia susceptibility.  相似文献   

4.
Polymeric immunoglobulin receptor (PIGR) is a transmembrane glycoprotein which is expressed by epithelial cells and is involved in the transcellular transport of polymeric immunoglobulins into secretions. We cloned the human gene for PIGR and used the clone to obtain probes to determine the chromosomal localization of PIGR. Analysis of somatic cell hybrids and in situ chromosomal hybridization localized the human PIGR gene locus to 1q31----q41.  相似文献   

5.
6.
We recently mapped the gene for ataxia-telangiectasia group A (ATA) to chromosome 11q22-23 by linkage analysis, using the genetic markers THY1 and pYNB3.12 (D11S144). The most likely order was cent-AT-S144-THY1. The present paper describes further mapping of the AT locus by means of a panel of 10 markers that span approximately 60 cM in the 11q22-23 region centered around S144 and THY1. Location scores indicate that three contiguous subsegments within the [S144-THY1] segment, as well as three contiguous segments telomeric to THY1, are each unlikely to contain the AT locus, while the more centromeric [STMY-S144] segment is most likely to contain the AT locus. These data, together with recent refinements in the linkage and physical maps of 11q22-23, place the AT locus at 11q23.  相似文献   

7.
Our previous studies revealed that the genetic locus for chicken muscular dystrophy of abnormal muscle (AM) mapped to chromosome 2q, and that the region showed conserved synteny with human chromosome 8q11-24.3. In the current study, we mapped the chicken orthologues of genes from human chromosome 8q11-24 in order to identify the responsible gene. Polymorphisms in the chicken orthologues were identified in the parents of the resource family. Twenty-three genes and expressed sequence tags (ESTs) were mapped to chicken chromosome 2 by linkage analysis. The detailed comparative map shows a high conservation of synteny between chicken chromosome 2q and human chromosome 8q. The AM locus was mapped between [inositol(myo)-1(or4)-monophosphatase 1] (IMPA1) gene and [core-binding factor, runt domain, alpha-subunit 2; translocated to 1; cyclin D-related] (CBFA2T1) gene. The genes located between IMPA1 and CBFA2T1 are the most likely candidates for chicken muscular dystrophy.  相似文献   

8.
Loss of heterozygosity for a locus on human chromosome 11q22-23 is observed at high frequency in non-small cell lung carcinoma (NSCLC). Introduction of a 1.1 Mb fragmented yeast artificial chromosome (YAC) mapping to this region completely suppresses the tumorigenic properties of a human NSCLC cell line, A549. Smaller fragmented YACs give partial but not complete suppression. To further localize the gene(s) responsible for this partial suppression, a bacterial artificial chromosome (BAC) and P1-based artificial chromosome (PAC) contig was constructed, completely spanning the candidate region. End sequence generated in the construction of the BAC/PAC contig identified a previously unmapped EST and served to order genomic sequence contigs from the publicly available Celera Genomics (CG) and Human Genome Project (HGP) efforts. Comparison showed that CG provided larger contigs, while HGP provided more coverage. Neither CG nor HGP provided complete sequence coverage, alone or in combination. The sequence was used to map 110 ESTs and to predict new genes, including two GenScan gene predictions that overlapped ESTs and were shown to be differentially expressed in tumorigenic and suppressed A549 cell lines.  相似文献   

9.
We have used pulsed field gel electrophoresis for further physical mapping studies in the q27 region of the human X chromosome. We show that the DXS 102 locus and the F9 gene are separated by only 300 kb despite a genetic distance of 1.4 cM; this linkage orients our large-scale map and shows that the mcf.2 transforming sequence is telomeric to F9. A BssHII complete-digest jumping library was used to jump toward the DXS 105 locus; a 130-kb jump was achieved and the corresponding "linking clone" was obtained.  相似文献   

10.
The human antithrombin III (ATIII) structural gene was mapped by in situ hybridization and quantitative analysis of ATIII gene dosage in DNA isolated from carriers of chromosome 1 deletions. These studies indicate that the ATIII structural gene maps to human chromosome q23-q25 and so is likely identical to AT3.  相似文献   

11.
12.
The genes encoding three invariant components of the human T-cell antigen receptor, the CD3 , , and chains, are located on human chromosome 11 at band q23. We isolated cosmid clones containing the human CD3 and chain genes in vectors designed for rapid and efficient chromosome walking. The human CD3 gene was located in the region immediately downstream of the CD3 and genes using synthetic oligonucleotide probes and the localization of this gene confirmed by DNA sequencing. Detailed restriction mapping of the CD3 locus demonstrated that all three CD3 subunits are encoded within 60 kb of DNA with the CD3 gene located 26 kb downstream of the CD3 and genes. Analysis of genomic DNA on pulsed field gels using probes isolated from these cosmid clones defined a physical map of 750 kb spanning the CD3 locus on human chromosome 11g23. The CD3 genes thus comprise a multigene family encoding cell surface components important for transmembrane signaling on T lymphocytes. The arrangement of these genes suggest that they may share common regulatory elements for the control of gene expression during T-cell ontogeny.  相似文献   

13.
14.
15.
A primary linkage map of the human chromosome 11q22-23 region   总被引:6,自引:0,他引:6  
We have constructed a genetic map of the human chromosomal region 11q22-23 by multipoint linkage analysis of 13 DNA polymorphisms that we have condensed into eight loci. An analysis for linkage disequilibrium between tightly linked probe/enzyme systems allows us to make specific recommendations for future DNA typing at these loci. The resulting sex-averaged multipoint map spans approximately 80 cM and differs considerably from previously reported genetic maps of this region. Our mathematically derived "most likely order" of the markers is compatible with physical mapping data using somatic cell hybrids. The known localizations of at least 14 functional genes and several disease loci to 11q22-23, including ataxia telangiectasia, make the mapping of this region especially relevant to studies of disease pathogenesis.  相似文献   

16.
The absence of horns in Bos taurus is under genetic control of the autosomal dominant polled locus which has been genetically mapped to the centromeric region of cattle Chromosome 1. Recently a 4-Mb BAC contig of this chromosomal region has been constructed. Toward positional cloning of the bovine polled locus, we identified 20 additional microsatellite markers spread over the contig map by random sequencing of bacterial artificial chromosome (BAC) subclones. A total of 26 markers were genotyped in 30 two-generation half-sib families of six different German cattle breeds segregating for the hornless phenotype including 336 informative meioses for the polled character. Our fine-mapping study involving 19 recombinant haplotypes allowed us to narrow the critical region for the bovine polled locus to a 1-Mb segment with a centromeric boundary at RP42-218J17_MS1 and a telomeric boundary at BM6438. For marker-assisted selection purposes, the first evidence of informative flanking markers helps to predict polled genotypes with a higher degree of accuracy within families until testing of the causative mutation is available.  相似文献   

17.
18.
Chromosome 9q34 has been extensively studied and mapped due to the presence of known disease genes, principally tuberous sclerosis 1 (TSC1), in this region. During the course of our mapping of this region we constructed a 555-kb contig beginning approximately 50 kb proximal to the dopamine-beta-hydroxylase (DBH) gene and extending, with one small deletion, distal to the D9S114 marker. The contig consists of 11 P1 clones, four PAC clones, one BAC clone and six cosmid clones and contains 27 new nonpolymorphic STSs. We have found the region to be unstable in P1, PAC and BAC cloning vehicles and have identified several deleted genomic clones. In addition, we have isolated and mapped the 3' portions of three putative genes located within or immediately distal to the DBH gene, including one large gene that runs on the opposite strand to DBH and utilizes portions of two DBH exons. The genomic clones of the contig, cDNAs and new STSs will be useful reagents for the further study and mapping of this region.  相似文献   

19.
G MacDonald  M L Chu  D R Cox 《Genomics》1991,11(2):317-323
Comparative mapping of human and mouse DNA for regions of genetic homology between human Chromosome 21 and the mouse genome is of interest because of the possibility of developing mouse models of human trisomy 21 (Down syndrome), understanding chromosome evolution, and isolating novel sequences conserved between the two species. At least two mouse chromosomes are known to carry sequences homologous to those on human Chromosome 21: mouse Chromosome 16 (D21S16h, D21S13h, D21S52h, App, Sod-1, Mx-1, Ets-2, Prgs,Ifnar) and mouse Chromosome 17 (D21S56h, Crya-1, and Cbs). Recently, five additional genes have been mapped within region 21q22 of human Chromosome 21:PFKL, CD18, COL6A1, COL6A2, and S100B. To assign these sequences to specific mouse chromosomes, we used human cDNA probes for COL6A1, COL6A2, CD18, and PFKL and a rat brain cDNA probe for S100B in conjunction with a panel of seven Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes. The specific chromosome complements of the hybrid cell lines and the presence or absence of hybridizing mouse sequences in their DNAs allow us to assign all five sequences to mouse Chromosome 10, with the assignment of Pfkl reported here for the first time. Analysis of genomic mouse DNA fragments produced by digestion with rare-cutting restriction enzymes and separated using pulsed-field gel electrophoresis allows us to construct a fine-structure physical map of two segments of the region of Chromosome 10 containing these five markers. The five loci span at least 1900 kb of mouse DNA and are consistent with the human order: Pfkl-Cd-18-Col6a-1-Col6a-2-S100b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号