首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Yeast invertase contains 14 sequons, all of which are glycosylated to varying degrees except for sequon 5 which is marginally glycosylated, if at all. This sequon overlaps with sequon 4 in a sequence consisting of Asn92-Asn93-Thr94-Ser95(Reddy et al., 1988, J. Biol. Chem., 263, 6978-6985). To determine whether glycosylation at Asn93is sterically hindered by the oligosaccharide on Asn92, the latter amino acid was converted to a glutamine residue by site-directed mutagenesis of the SUC2 gene in a plasmid vector which was expressed in Saccharomyces cerevisiae. A glycopeptide encompassing sequons 3 through 6 was purified from a tryptic digest of the mutagenized invertase and sequenced by Edman degradation, which revealed that Asn93 of sequon 5 contained very little, if any, carbohydrate, despite the elimination of sequon 4. When Ser and Thr were inverted to yield Asn-Asn-Ser-Thr carbohydrate was associated primarily with the second sequon, in agreement with numerous studies indicating that Asn-X-Thr is preferred to Asn-X-Ser as an oligosaccharide acceptor. However, when the invertase overlapping sequons were converted to Asn-Asn-Ser-Ser, both sequons were clearly glycosylated, with the latter sequon predominating. These findings rule out steric hindrance as a factor involved in preventing the glycosylation of sequon 5 in invertase. Comparable results were obtained using an in vitro system with sequon-containing tri- and tetrapeptides acceptors, in addition to larger oligosaccharide acceptors.  相似文献   

4.
In an in vitro system comprising a yeast cell-free translation system, yeast microsomes and mRNA encoding prepro-alpha-factor, the translocation of this protein across the membrane of the microsomal vesicle and its glycosylation could b uncoupled from its translation. Such post-translational processing is dependent upon the presence of ATP in the system. It is not, however, affected by a variety of uncouplers, ionophores or inhibitors, including carbonyl cyanide m-chlorophenyl hydrazone (CCCP), valinomycin, nigericin, dinitrophenol (DNP), potassium cyanide (KCN) or N-ethyl maleimide (NEM). This mechanism of translocation is significant as it indicates that a protein of 18 000 daltons is capable of crossing an endoplasmic reticulum-derived membrane post-translationally. For the moment, this phenomenon seems to be restricted to prepro-alpha-factor in the yeast in vitro system. Neither invertase nor IgG chi light chain could be translocated post-translationally in yeast, nor was such processing observed for prepro-alpha-factor in a wheat germ system supplemented with canine pancreatic microsomes.  相似文献   

5.
An in vitro translocation system has been reconstituted with subcellular fractions from the cell wall-less mutant of Neurospora crassa (fz;sg;os-1). Prepro alpha factor and invertase, secretory proteins from yeast, were faithfully translocated and glycosylated by Neurospora microsomes when presence cotranslationally in the Neurospora translation system. When presence cotranslationally in the Neurospora translation system, microsomes from canine pancreas(cRM) could also translocate and glycosylate the secretory proteins. However, salt-extracted cRM, which is depleted of canine signal recognition particle, could not. Furthermore, prepro alpha factor and a truncated form of invertase, containing the first 262-amino acid residues of the secretory invertase, were glycosylated by Neurospora microsomes posttranslationally, whereas only the truncated form of invertase was glycosylated by cRM when added posttranslationally. The full length invertase was not glycosylated posttranslationally. Posttranslational glycosylation of prepro alpha factor and of the truncated form of invertase is dependent on the hydrolysis of a nucleoside triphosphate. These data suggest that posttranslational glycosylation of prepro alpha factor occurs via a novel type of recognition mechanism which is either absent or ineffective in cRM.  相似文献   

6.
7.
8.
Highly purified mRNA for chicken ovalbumin has been translated in a cell-free protein synthesizing system from rabbit reticulocytes in the presence or absence of EDTA-stripped microsomal membranes from dog pancreas. Nascent--but not completed--ovalbumin was transferred across the microsomal membrane, as demonstrated by cotranslational core glycosylation of ovalbumin nascent chains, by resistance to posttranslational proteolysis of only the glycosylated ovalbumin chains, and by cosedimentation with the membrane of exclusively the glycosylated form. Furthermore, nascent chains of bovine prolactin were observed to compete with nascent ovalbumin for transfer across the microsomal membrane. However, no competition for membrane sites was observed between nascent chains of rabbit globin and either nascent ovalbumin or prolactin. We interpret these results to suggest that nascent ovalbumin contains the functional equivalent of a signal sequence for transfer across membranes, and that membrane components involved in the segregation of secretory proteins with cleaved signal sequences also function in the segregation of ovalbumin.  相似文献   

9.
Many eukaryotic proteins are modified by N-linked glycosylation, a process in which oligosaccharides are added to asparagine residues in the sequon Asn-X-Ser/Thr. However, not all such sequons are glycosylated. For example, rabies virus glycoprotein (RGP) contains three sequons, only two of which appear to be glycosylated in virions. To examine further the signals in proteins which regulate N-linked core glycosylation, the glycosylation efficiencies of each of the three sequons in the antigenic domain of RGP were compared. For these studies, mutants were generated in which one or more sequons were deleted by site-directed mutagenesis. Core glycosylation of these mutants was studied using two independent systems: 1) in vitro translation in rabbit reticulocyte lysate supplemented with dog pancreatic microsomes, and 2) transfection into glycosylation-deficient Chinese hamster ovary cells. Parallel results were obtained with both systems, demonstrating that the sequon at Asn37 is inefficiently glycosylated, the sequons at Asn247 and Asn319 are efficiently glycosylated, and the glycosylation efficiency of each sequon is not influenced by glycosylation at other sequons in this protein. High levels of cell surface expression of RGP in Chinese hamster ovary cells are seen with any mutant containing an intact sequon at Asn247 or Asn319, whereas low levels of cell surface expression are seen when the sequon at Asn37 is present alone; deletion of all three sequons completely blocks RGP cell surface expression. Thus, although core glycosylation at Asn37 is inefficient, it is still sufficient to support a biological function, cell surface expression. Future studies using mutagenesis of this model protein and its expression in these two well defined systems will aim to begin to unravel the rules governing core glycosylation of glycoproteins.  相似文献   

10.
N-linked glycosylation, a common co-translational modification in eukaryotic cells, involves the transfer of a lipid-linked oligosaccharide onto asparagine residues in a tripeptide sequon on a nascent protein in the lumen of the endoplasmic reticulum. The attachment of an oligosaccharide unit to the polypeptide at the site of occupancy can enhance solubility, improve folding, facilitate secretion, modulate antigenicity, and increase in vivo half-life of the glycoprotein. A number of proteins exhibit variable site occupancy. The efficiency of protein N-glycosylation is dependent on the kinetics of the individual steps in the biosynthesis of the dolichol-linked oligosaccharide and the transfer of the oligosaccharide from the lipid donor substrate to the nascent polypeptide. In this review, we will discuss the role of N-linked glycan site occupancy and give an overview of the possible limitations associated with variable site occupancy. The characterization of the dolichol pyrophosphate biosynthetic pathway and the recent identification of potential rate limiting enzymes in yeast and mammalian cells has made it possible to investigate their role in site occupancy. Genetic and biochemical characterization of oligosaccharide transferase (OST) complex in yeast and mammalian cells have demonstrated the importance of specific OST subunits in protein N-glycosylation. In addition, insights into the location and residues in and around the acceptor tripeptide sequon suggest an influence on N-glycan site occupancy. Insights from these characterizations are being used to elucidate methodologies to control N-glycosylation site heterogeneity.  相似文献   

11.
Sindbis virus 26S RNA has been translated in a cell-free protein-synthesizing system from rabbit reticulocytes. When the system was supplemented with EDTA-stripped dog pancreas microsomal membranes, the following results were obtained: (a) Complete translation of 26S RNA, resulting in the production, by endoproteolytic cleavage, of three polypeptides that are apparently identical to those forms of C, PE2, and E1 that are synthesized in vivo by infected host cells during a 3-min pulse with [35S]methionine. (b) Correct topological deposition of the three viral polypeptides--in vitro-synthesized PE2 and E1 forms are inserted into dog pancreas microsomal membranes in a orientation which, by the criterion of their limited (or total) inaccessibility to proteolytic probes, is indistinguishable from that of their counterparts in the rough endoplasmic recticulum of infected host cells; in vitro-synthesized C is not inserted into membranes and therefore is accessible to proteolytic enzymes, like its in vivo-synthesized counterpart. (c) Core glycosylation of in vitro-synthesized PE2 and E1 forms, as indicated by binding to concanavalin A Sepharose and subsequent elution by alpha-methylmannoside.  相似文献   

12.
B Wiedmann  S Prehn 《FEBS letters》1999,458(1):51-54
We study here the binding of ribosomes to the endoplasmic reticulum (ER) membrane and its dependence on nascent polypeptide-associated complex (NAC). For this, we use an in vitro translation system in combination with isolated microsomes. Importantly, all components in the system are derived from a single source, Saccharomyces cerevisiae. Ribosome nascent chains (RNCs) of the two naturally occurring invertase species (secreted or cytosolic) were prepared in wild-type, delta alpha NAC or delta alpha beta 1 beta 3 NAC translation lysates and tested for binding to the corresponding microsomal membranes. We provide evidence that NAC prevents binding of RNCs without a signal sequence to yeast membranes. In the absence of NAC, signal-less RNCs are able to bind to ER membranes. However, following puromycin treatment, only very few nascent chains translocate into the lumen, as detected by glycosylation.  相似文献   

13.
The data presented in this paper demonstrate that native small ribosomal subunits from reticulocytes (containing initiation factors) and large ribosomal subunits derived from free polysomes of reticulocytes by the puromycin-KCl procedures can function with stripped microsomes derived from dog pancreas rough microsomes in a protein-synthesizing system in vitro in response to added IgG light chain mRNA so as to segregate the translation product in a proteolysis- resistant space. No such segregation took place for the translation product of globin mRNA. In addition to their ability to segregate the translation product of a specific heterologous mRNA, native dog pancreas rough microsomes as well as derived stripped microsomes were able to proteolytically process the larger, primary translation product in an apparently correct manner, as evidenced by the identical mol wt of the segregated translation product and the authentic secreted light chain. Segregation as well as proteolytic processing by native and stripped microsomes occurred only during ongoing translation but not after completion of translation. Attempts to solubilize the proteolytic processing activity, presumably localized in the microsomal membrane by detergent treatment, and to achieve proteolytic processing of the completed light chain precursor protein failed. Taken together, these results establish unequivocally that the information for segregation of a translation product is encoded in the mRNA itself, not in the protein- synthesizing apparatus; this provides strong evidence in support of the signal hypothesis.  相似文献   

14.
15.
Asn-linked glycosylation is the most ubiquitous posttranslational protein modification in eukaryotes and archaea, and in some eubacteria. Oligosaccharyltransferase (OST) catalyzes the transfer of preassembled oligosaccharides on lipid carriers onto asparagine residues in polypeptide chains. Inefficient oligosaccharide transfer results in glycoprotein heterogeneity, which is particularly bothersome in pharmaceutical glycoprotein production. Amino acid variation at the X position of the Asn-X-Ser/Thr sequon is known to modulate the glycosylation efficiency. The best amino acid at X is valine, for an archaeal Pyrococcus furiosus OST. We performed a systematic alanine mutagenesis study of the archaeal OST to identify the essential and dispensable amino acid residues in the three catalytic motifs. We then investigated the effects of the dispensable mutations on the amino acid preference in the N-glycosylation sequon. One residue position was found to selectively affect the amino acid preference at the X position. This residue is located within the recently identified DXXKXXX(M/I) motif, suggesting the involvement of this motif in N-glycosylation sequon recognition. In applications, mutations at this position may facilitate the design of OST variants adapted to particular N-glycosylation sites to reduce the heterogeneity of glycan occupancy. In fact, a mutation at this position led to 9-fold higher activity relative to the wild-type enzyme, toward a peptide containing arginine at X in place of valine. This mutational approach is potentially applicable to eukaryotic and eubacterial OSTs for the production of homogenous glycoproteins in engineered mammalian and Escherichia coli cells.  相似文献   

16.
Roy Jefferis 《MABS-AUSTIN》2013,5(5):638-640
The glycoform profile of a glycoprotein is non-templated, i.e., is not encoded within the genome or otherwise predetermined; however, it is estimated that ~50% of human genes having an open reading frame encode a –N-X-S/T- amino acid sequence, where X represents any amino acid other than proline, that comprises a potential site (sequon) for N-linked glycosylation of the translated protein. N-linked glycosylation is both a co- and post-translational modification. The complex oligosaccharide GlcNAc2Man9Glu3 may be added at a –N-X-S/T- sequon as the polypeptide chain emerges from the ribosome tunnel. Local secondary structure determines whether oligosaccharide is added and the extent of addition. Higher occupancy is observed for –N-X-T- sequons than at –N-X-S- sequons, and the efficiency of addition can be further influenced by adjacent amino acid residues.  相似文献   

17.
A cell-free system has been constructed to study the mechanism by which a single messenger RNA directs the synthesis of proteins destined for two different cellular locations. The Semliki Forest virus (SFV) 26 S mRNA codes for the viral capsid protein (C protein) and the membrane proteins p62 and E1. The three virus proteins are read in this order from the messenger RNA using one initiation site. The C protein is left on the cytoplasmic side and the p62 and the El proteins are inserted into the endoplasmic reticulum membrane. Translation of 26 S mRNA in a HeLa cell-free system in the presence of microsomes from dog pancreas reproduced the segregation, and proteolytic processing and glycosylation observed in infected cells. The signal for membrane binding was in the amino-terminal end of p62. The results indicate that the membrane proteins become inserted in the nascent state. The cleavage between p62 and El was coupled to membrane insertion. If the membranes were added after a period corresponding to the synthesis of about 100 amino acids of the p62 protein, segregation, glycosylation and cleavage between p62 and E1 failed to occur.  相似文献   

18.
Ferritin, an iron-sequestering and -binding protein, is localized to the vacuolar system in Calpodes ethlius larvae. The amount of iron-loaded ferritin in intact larval midgut can be increased by pretreatment with iron. When poly(A)+ RNA from control or iron-treated larvae was translated in vitro, a 24 kilodalton (kDa) protein was a major translation product. If the cell-free system was supplemented with dog pancreatic microsomes, the 24-kDa protein was not detectable: the major translation product was 28-30 kDa. The 24-kDa and 28- to 30-kDa proteins were identified as ferritin subunits by immunoprecipitation with anti-Manduca ferritin antibodies. Proteinase K digestion of the translation products showed that the 28- to 30-kDa subunit was targeted into the lumen of, and protected by, the microsomes. The change in molecular mass of the ferritin monomer was attributed to glycosylation of the 24-kDa subunit within the lumen of the microsomes. This was demonstrated by (i) the ability of the 28- to 30-kDa subunit, but not the 24-kDa subunit, to bind concanavalin A on Western blots and (ii) inhibition of the change in molecular mass from 24 to 28-30 kDa if tunicamycin is added to the microsomes. The results indicate that the Calpodes ferritin subunit was synthesized, targeted to microsomes, and glycosylated within their lumen in a rabbit reticulocyte cell-free system primed with midgut poly(A)+ RNA extracted from control or iron-treated larvae.  相似文献   

19.
Oligosaccharyl transferase (OT) catalyzes the transfer of a lipid-linked oligosaccharide to the nascent polypeptide emerging from the translocon. Currently, there is no structural information on the membrane-embedded OT complex, which consists of eight different polypeptide chains. We report a 12 A resolution cryo-electron microscopy structure of OT from yeast. We mapped the locations of four essential OT subunits through a maltose-binding protein fusion strategy. OT was found to have a large domain in the lumenal side of endoplasmic reticulum where the catalysis occurs. The lumenal domain mainly comprises the catalytic Stt3p, the donor substrate-recognizing Wbp1p, and the acceptor substrate-recognizing Ost1p. A prominent groove was observed between these subunits, and we propose that the nascent polypeptide from the translocon threads through this groove while being scanned by the Ost1p subunit for the presence of the glycosylation sequon.  相似文献   

20.
Processing of M13 procoat protein, synthesized in a bacterial cell-free extract, to transmembrane coat protein by dog pancreas microsomes is stimulated by a system which is present in rabbit reticulocytes and depends on nucleoside triphosphates. This system consists of (at least) two components which act synergistically: members of the 70-kd heat shock protein family and (at least) one additional component. This component depends on ATP (or GTP) for its action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号