首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study is made of the effect of the initial magnetic field magnitude on the energy of deuterium ions accelerated in the collision of two magnetosonic shock waves propagating in a deuterium plasma quasi-perpendicularly to the magnetic field. Experiments were carried out at a constant plasma density of ?2.5×1013 cm?3. It is found that, as the external magnetic field decreases from 1.4 to 0.7 T and, accordingly, the magnetic Mach number increases from 1.02 to 2.3, the energy of accelerated ions increases from 3.2 to 7.5 MeV. The maximum number of accelerated ions attains 105–106 particles per shot.  相似文献   

2.
Many signals that modify plant cell growth and development initiate changes in cytoplasmic Ca2+. The subsequent movement of Ca2+ in the cytoplasm is thought to take place via waves of free Ca2+. These waves may be initiated at defined regions of the cell and movement requires release from a reticulated endoplasmic reticulum and the vacuole. The mechanism of wave propagation is outlined and the possible basis of repetitive reticulum wave formation, Ca2+ oscillations and capacitative Ca2+ signalling is discussed. Evidence for the presence of Ca2+ waves in plant cells is outlined, and from studies on raphides it is suggested that the capabilities for capacitative Ca2+ signalling are also present. The paper finishes with an outline of the possible interrelation between Ca2+ waves and organelles and describes the intercellular movement of Ca2+ waves and the relevance of such information communication to plant development.  相似文献   

3.
We establish the existence of travelling wave solutions for two reaction diffusion systems based on the Lotka-Volterra model for predator and prey interactions. For simplicity, we consider only 1 space dimension. The waves are of transition front type, analogous to the travelling wave solutions discussed by Fisher and Kolmogorov et al. for a scalar reaction diffusion equation. The waves discussed here are not necessarily monotone. For any speed c there is a travelling wave solution of transition front type. For one of the systems discussed here, there is a distinguished speed c* dividing the waves into two types, waves of speed c < c* being one type, waves of speed c ? c* being of the other type. We present numerical evidence that for this system the wave of speed c* is stable, and that c* is an asymptotic speed of propagation in some sense. For the other system, waves of all speeds are in some sense stable. The proof of existence uses a shooting argument and a Lyapunov function. We also discuss some possible biological implications of the existence of these waves.  相似文献   

4.
It is assumed that waves of configurational change of cell surface proteins can pass over the length of columnar cells in a multicellular membrane, thus passing across the membrane. It is expected that waves of change in fluidity of surface water and of Na+ vs K+ complexing preference by cell surface proteins will result from the waves of change in surface protein configuration. The entire wave process is called a chemiperistaltic wave, and is a natural extension of the concepts embodied in the association-induction hypothesis of Ling. It is shown that chemiperistaltic waves may transport Na+ across multicellular membranes through extracellular space between cells in a manner which is consistent with the experiments of Cereijidoet al. (1968) on frog skin. Equations for transport of Na+ by chemiperistaltic waves are derived for an idealized membrane. It seems possible that Na+−K+ activated ATPase may represent the isolated form of the cell surface protein in which chemiperistaltic waves are propagated or that an actomyosin-like protein may be involved.  相似文献   

5.
Intercellular Ca2+ waves are commonly observed in many cell types. In non-excitable cells, intercellular Ca2+ waves are mediated by gap junctional diffusion of a Ca2+ mobilizing messenger such as IP3. Since Ca2+ is heavily buffered in the cytosolic environment, it has been hypothesized that the contribution of the diffusion of Ca2+ to intercellular Ca2+ waves is limited. Here, we report that in the presence of plasma membrane Ca2+ ATPase inhibitors, locally-released Ca2+ from the flash-photolysis of caged-Ca2+ appeared to induce further Ca2+ release and were propagated from one cell to another, indicating that Ca2+ was self-amplified to mediate intercellular Ca2+ waves. Our findings support the notion that non-excitable cells can establish a highly excitable medium to communicate local responses with distant cells.  相似文献   

6.
Interstitial cells of Cajal (ICC-MY) are pacemakers that generate and propagate electrical slow waves in gastrointestinal (GI) muscles. Slow waves appear to be generated by the release of Ca2+ from intracellular stores and activation of Ca2+-activated Cl channels (Ano1). Conduction of slow waves to smooth muscle cells coordinates rhythmic contractions. Mitochondrial Ca2+ handling is currently thought to be critical for ICC pacemaking. Protonophores, inhibitors of the electron transport chain (FCCP, CCCP or antimycin) or mitochondrial Na+/Ca2+ exchange blockers inhibited slow waves in several GI muscles. Here we utilized Ca2+ imaging of ICC in small intestinal muscles in situ to determine the effects of mitochondrial drugs on Ca2+ transients in ICC. Muscles were obtained from mice expressing a genetically encoded Ca2+ indicator (GCaMP3) in ICC. FCCP, CCCP, antimycin, a uniporter blocker, Ru360, and a mitochondrial Na+/Ca2+ exchange inhibitor, CGP-37157 inhibited Ca2+ transients in ICC-MY. Effects were not due to depletion of ATP, as oligomycin did not affect Ca2+ transients. Patch-clamp experiments were performed to test the effects of the mitochondrial drugs on key pacemaker conductances, Ano1 and T-type Ca2+ (CaV3.2), in HEK293 cells. Antimycin blocked Ano1 and reduced CaV3.2 currents. CCCP blocked CaV3.2 current but did not affect Ano1 current. Ano1 and Cav3.2 currents were inhibited by CGP-37157. Inhibitory effects of mitochondrial drugs on slow waves and Ca2+ signalling in ICC can be explained by direct antagonism of key pacemaker conductances in ICC that generate and propagate slow waves. A direct obligatory role for mitochondria in pacemaker activity is therefore questionable.  相似文献   

7.
Airway hyperresponsiveness is a major characteristic of asthma and is generally ascribed to excessive airway narrowing associated with the contraction of airway smooth muscle cells (ASMCs). ASMC contraction is initiated by a rise in intracellular calcium concentration ([Ca2+]i), observed as oscillatory Ca2+ waves that can be induced by either agonist or high extracellular K+ (KCl). In this work, we present a model of oscillatory Ca2+ waves based on experimental data that incorporate both the inositol trisphosphate receptor and the ryanodine receptor. We then combined this Ca2+ model and our modified actin-myosin cross-bridge model to investigate the role and contribution of oscillatory Ca2+ waves to contractile force generation in mouse ASMCs. The model predicts that: 1), the difference in behavior of agonist- and KCl-induced Ca2+ waves results principally from the fact that the sarcoplasmic reticulum is depleted during agonist-induced oscillations, but is overfilled during KCl-induced oscillations; 2), regardless of the order in which agonist and KCl are added into the cell, the resulting [Ca2+]i oscillations will always be the short-period, agonist-induced-like oscillations; and 3), both the inositol trisphosphate receptor and the ryanodine receptor densities are higher toward one end of the cell. In addition, our results indicate that oscillatory Ca2+ waves generate less contraction than whole-cell Ca2+ oscillations induced by the same agonist concentration. This is due to the spatial inhomogeneity of the receptor distributions.  相似文献   

8.
Cytosolic Ca2+ transients induced by hepatocyte growth factor (HGF) were imaged in primary cultured rat hepatocytes using newly developed rapid scanning confocal microscopes and Indo-1. HGF (40 ng/ml) increased cytosolic free Ca2+ concentration ([Ca2+]i) in about 60% of hepatocytes, in 45% of which the increases were oscillatory. In each of the oscillatory hepatocytes, the repetitive increases in [Ca2+]i originated from a specific same region adjacent to the cell membrane and propagated across the cell like waves. Phenylephrine (10 μM) also induced Ca2+ waves. The locus where HGF-induced Ca2+ waves and phenylephrine-induced Ca2+ waves were originated was the same, and there was a correlation in the peak height between HGF-induced Ca2+ waves and phenylephrine-induced Ca2+ waves in each cell, although the mechanisms of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) formation induced by HGF should be different from those by phenylephrine. On the other hand, there was no correlation between sensitivity of each cell to HGF and that to phenylephrine which were measured as latent periods prior to Ca2+ rises after an addition of the agonists. These results suggested the following: the spatial patterns of Ca2+ waves were decided by a common mechanism, probably not the propagation of Ins(1,4,5)P3 but the distribution of Ins(1,4,5)P3-sensitive Ca2+ pools; sensitivities of each cell to the agonists did not mainly depend on the common mechanism.  相似文献   

9.
It has been observed by various ground and space based solar missions that magnetic reconnection occurs frequently in the photosphere-chromosphere region as well as in the solar corona. The purpose of this article is to examine the process of reconnection in thin current sheet formed between two oppositely directed magnetic flux tubes in photospheric-chromospheric region. Using the data of different atmospheric models for the solar photosphere and chromosphere, we have estimated the rate of magnetic reconnection in terms of Alfvénic Mach number, growth rate of tearing mode, island length scales, and energy dissipation rate necessary to heat the chromospheric plasma. It is found that magnetic Reynolds number for the current sheet in the chromosphere varies from 1.14 × 103 to 7.14 × 106 which indicates that the field lines in the photosphere and chromosphere reconnect with speed, that is, 0.00034 to 0.0297 times the Alfvén speed. Frequency of the MHD waves generated in the chromosphere reconnection region is of the order of 100 Hz, so these high-frequency waves may be the sources of coronal heating and solar wind acceleration.  相似文献   

10.
Bacterial cells of the strain Escherichia coli K12 were exposed to millimeter electromagnetic waves (mm waves) with and without additional exposure to ultraviolet light λ = 254 nm (UVC). The mm waves were produced by a medical microwave generator emitting a 4-GHz-wide band around a 61 GHz center frequency and delivering an irradiation of 1 mW/cm2 and a standard absorption rate (SAR) of 84 W/kg to the bacteria. Exposure to the mm waves alone for up to 30 minutes did not change the survival rate of bacteria. Exposure to mm waves followed by UVC irradiation also did not alter the number of surviving E. coli cells in comparison to UVC-treated controls. When mm waves were applied after the UVC exposure, a dose-dependent increase of up to 30% in the survival of E. coli was observed compared to UVC + sham-irradiated bacteria. Because sham controls and experimental samples were maintained under the same thermal conditions, the effect is not likely to be due to heating, although the possibility of nonuniform distribution of microwave heating in different layers of irradiated bacterial suspension cannot be ruled out. The mechanism for this effect appears to involve certain DNA repair systems that act as cellular targets for mm waves. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The fire-diffuse-fire model provides an idealized model of Ca2+ release within living cells. The effect of calcium pumps, which drive Ca2+ back into internal stores, is often neglected for mathematical simplicity. Here we show how to explicitly analyse such effects by extending the work of Keizer et al. [Keizer, J. E., G. D. Smith, S. Ponce Dawson and J. Pearson (1998). Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys. J. 75, 595–600.]. For travelling waves, in which release events occur sequentially, we construct the speed of waves in terms of the time-scale at which pumps operate. An immediate consequence of this analysis is that the inclusion of calcium pumps leads to multiple solutions. A linear stability analysis determines those solution branches in parameter space which are stable. Numerical continuation is used to provide explicit examples of the bifurcation diagrams of the speed of waves as a function of physiologically significant system parameters.  相似文献   

12.
Waves of elevated intracellular free Ca2+ that propagate between neighboring astrocytes (Ca2+ waves) are important for the communication among astrocytes. We have previously revealed that focal photolysis of a caged calcium ionophore results in an increase in the concentration of intracellular Ca2+ in the target astrocytes, then the increase propagates to neighboring astrocytes through gap junctions. The extracellular ATP-purinoceptors signaling pathways are not primarily responsible for the propagation of the photolytic flash-induced Ca2+ waves. Here we examined whether and if so how the dynamics of Ca2+ waves changed after treatment with sublethal simulated ischemia; oxygen-glucose deprivation (OGD). OGD treatment increased the astrocytic expression of P2Y1 and P2Y2 receptors early during reperfusion, resulting in an increase in the propagating waves speed. In contrast, the expression of a gap junction protein was not changed significantly by the OGD suggesting that the extracellular ATP-P2Y receptors signaling pathways were preferentially enhanced after OGD. The present method to induce Ca2+ waves by focal photolysis of a caged calcium ionophore may provide a valuable tool with which to analyze glial Ca2+ waves under not only normal but also pathologic conditions.  相似文献   

13.
The polarized morphology of radial glia allows them to functionally interconnect different layers of CNS tissues including the retina, cerebellum, and cortex. A likely mechanism involves propagation of transcellular Ca2+ waves which were proposed to involve purinergic signaling. Because it is not known whether ATP release is required for astroglial Ca2+ wave propagation we investigated this in mouse Müller cells, radial astroglia-like retinal cells in which in which waves can be induced and supported by Orai/TRPC1 (transient receptor potential isoform 1) channels. We found that depletion of endoplasmic reticulum (ER) stores triggers regenerative propagation of transcellular Ca2+ waves that is independent of ATP release and activation of P2X and P2Y receptors. Both the amplitude and kinetics of transcellular, depletion-induced waves were resistant to non-selective purinergic P2 antagonists such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS). Thus, store-operated calcium entry (SOCE) is itself sufficient for the initiation and subcellular propagation of calcium waves in radial glia.  相似文献   

14.
Ca2+ is a highly versatile second messenger that plays a key role in the regulation of numerous cell processes. One‐way cells ensure the specificity and reliability of Ca2+ signals is by organizing them spatially in the form of waves that propagate throughout the cell or within a specific subcellular region. In non‐excitable cells, the inositol 1,4,5‐trisphosphate receptor (IP3R) is responsible for the release of Ca2+ from the endoplasmic reticulum. The spatial aspect of the Ca2+ signal depends on the organization of various elements of the Ca2+ signaling toolkit and varies from tissue to tissue. Ca2+ is implicated in many of endothelium functions that thus depend on the versatility of Ca2+ signaling. In the present study, we showed that the disruption of caveolae microdomains in bovine aortic endothelial cells (BAEC) with methyl‐ß‐cyclodextrin was not sufficient to disorganize the propagation of Ca2+ waves when the cells were stimulated with ATP or bradykinin. However, disorganizing microfilaments with latrunculin B and microtubules with colchicine both prevented the formation of Ca2+ waves. These results suggest that the organization of the Ca2+ waves mediated by IP3R channels does not depend on the integrity of caveolae in BAEC, but that microtubule and microfilament cytoskeleton assembly is crucial. J. Cell. Biochem. 106: 344–352, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
Intercellular Ca2+ waves can coordinate the action of large numbers of cells over significant distances. Recent work in many different systems has indicated that the release of ATP is fundamental for the propagation of most Ca2+ waves. In the organ of hearing, the cochlea, ATP release is involved in critical signalling events during tissue maturation. ATP-dependent signalling is also implicated in the normal hearing process and in sensing cochlear damage. Here, we show that two distinct Ca2+ waves are triggered during damage to cochlear explants. Both Ca2+ waves are elicited by extracellular ATP acting on P2 receptors, but they differ in their source of Ca2+, their velocity, their extent of spread and the cell type through which they propagate. A slower Ca2+ wave (14 μm/s) communicates between Deiters’ cells and is mediated by P2Y receptors and Ca2+ release from IP3-sensitive stores. In contrast, a faster Ca2+ wave (41 μm/s) propagates through sensory hair cells and is mediated by Ca2+ influx from the external environment. Using inhibitors and selective agonists of P2 receptors, we suggest that the faster Ca2+ wave is mediated by P2X4 receptors. Thus, in complex tissues, the expression of different receptors determines the propagation of distinct intercellular communication signals.  相似文献   

16.
The propagation of fire-diffuse-fire Ca2+ waves through a three-dimensional rectangular domain is considered. The domain is infinite in extent in the direction of propagation but with lateral barriers to diffusion which contain Ca2+ pumps. The Ca2+ concentration profile due to the firing of a release site (spark) is derived analytically based on the Green’s function for the diffusion equation on the domain. The existence, stability and speed of these waves is shown to be critically dependent on the dimensions of the domain and the Ca2+ pump rate. It is shown that the smaller the dimensions of the region, the lower the Ca2+ release flux required for wave propagation, and the higher the wave speed. Also it is shown that the region may support multiple Ca2+ wavefronts of varying wave speed. This model is relevant to subsarcolemmal waves in atrial myocytes (Kockskämper et al., 2001, Biophys. J. 81, 2590–2605), and the results may be of importance in understanding the roles of the endoplasmic/sarcoplasmic reticulum, surface membranes and Ca2+ pumps in the intracellular Ca2+ dynamics of cells.  相似文献   

17.
Relativistic beams produced by the VEPP-5 injection complex (Budker Institute of Nuclear Physics, Siberian Division, Russian Academy of Sciences) can be used to generate plasma waves with a longitudinal electric field of 1 GV/m. A part of the electron (or positron) driver bunch is accelerated by this field over a distance of up to 1 m. The main advantage of the proposed design over the previous wakefield acceleration experiments is the beam preparation system capable of compressing bunches to a length of σz = 0.1 mm in the longitudinal direction and producing an optimal longitudinal profile of the beam density. The main parameters of the planned device are as follows: the electron energy at the entrance to the plasma is 510 MeV, the number of particles in the bunch is 2 × 1010, the plasma density is up to 1016 cm?3, the number of accelerated particles is up to 3 × 109, and their energy spread is less than 10%. The physical project of the experiment is presented, and the results of computer simulations of the beam-plasma interaction are described.  相似文献   

18.
BackgroundThe rhythmic contraction and relaxation of smooth muscles in the gastrointestinal (GI) tract is governed by pacemaker electrical potentials, also termed slow waves, which are calcium currents generated by interstitial cells of Cajal (ICCs). Malfunction of pacemaker rhythms contributes to a number of clinically challenging gastrointestinal motility disorders.MethodA microelectrode array (MEA) was used to record slow waves in vitro from intact GI tissues freshly isolated from the ICR mouse and Suncus murinus. The effects of temperature, extracellular calcium and potassium concentrations on pacemaker potentials were quantified using spatiotemporal metrics.ResultsPacemaker frequency decreased from the duodenum to the ileum in the mouse, but this phenomenon was less significant in Suncus murinus. In both the mouse and Suncus murinus, the stomach had a much lower pacemaker frequency than the intestine. Propagation velocity and amplitude were highest in the proximal intestine. Temperature significantly increased pacemaker frequency in the intestinal tissues of both species. Removal of Ca2+ from the medium inhibited pacemaker potential and increasing the Ca2+ concentration increased pacemaker frequency in the mouse ileum. Increasing K+ concentration decreased pacemaker frequency in the absence of nifedipine.ConclusionsThe MEA allows efficient investigation of gut pacemaker frequency and propagation.  相似文献   

19.
Smooth muscle contraction is regulated by changes in cytosolic Ca2+ concentration ([Ca2+]i). In response to stimulation, Ca2+ increase in a single cell can propagate to neighbouring cells through gap junctions, as intercellular Ca2+ waves. To investigate the mechanisms underlying Ca2+ wave propagation between smooth muscle cells, we used primary cultured rat mesenteric smooth muscle cells (pSMCs). Cells were aligned with the microcontact printing technique and a single pSMC was locally stimulated by mechanical stimulation or by microejection of KCl. Mechanical stimulation evoked two distinct Ca2+ waves: (1) a fast wave (2 mm/s) that propagated to all neighbouring cells, and (2) a slow wave (20 μm/s) that was spatially limited in propagation. KCl induced only fast Ca2+ waves of the same velocity as the mechanically induced fast waves. Inhibition of gap junctions, voltage-operated calcium channels, inositol 1,4,5-trisphosphate (IP3) and ryanodine receptors, shows that the fast wave was due to gap junction mediated membrane depolarization and subsequent Ca2+ influx through voltage-operated Ca2+ channels, whereas, the slow wave was due to Ca2+ release primarily through IP3 receptors. Altogether, these results indicate that temporally and spatially distinct mechanisms allow intercellular communication between SMCs. In intact arteries this may allow fine tuning of vessel tone.  相似文献   

20.
Astrocytes participate in brain functions through Ca2+ signals, including Ca2+ waves and Ca2+ oscillations. Currently the mechanisms of Ca2+ signals in astrocytes are not fully clear. Here, we present a computational model to specify the relative contributions of different Ca2+ flows between the extracellular space, the cytoplasm and the endoplasmic reticulum of astrocytes to the generation of spontaneous Ca2+ oscillations (CASs) and cortical spreading depression (CSD)-triggered Ca2+ waves (CSDCWs) in a one-dimensional astrocyte network. This model shows that CASs depend primarily on Ca2+ released from internal stores of astrocytes, and CSDCWs depend mainly on voltage-gated Ca2+ influx. It predicts that voltage-gated Ca2+ influx is able to generate Ca2+ waves during the process of CSD even after depleting internal Ca2+ stores. Furthermore, the model investigates the interactions between CASs and CSDCWs and shows that the pass of CSDCWs suppresses CASs, whereas CASs do not prevent the generation of CSDCWs. This work quantitatively analyzes the generation of astrocytic Ca2+ signals and indicates different mechanisms underlying CSDCWs and non-CSDCWs. Research on the different types of Ca2+ signals might help to understand the ways by which astrocytes participate in information processing in brain functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号