首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to maximize the lifetime reproductive success of parasitoids, they should be induced to dynamically accept individual hosts that have different suitability for oviposition. Parasitoids tend to exhibit higher host-selective behavior when their egg load is limited, and are less selective if they are facing time constraints. Here, we evaluated the effects of parasitoid age on egg load, fecundity and host instar preference of a honey-fed aphid parasitoid, Aphelinus asychis Walker (Hymenoptera: Aphelinidae). Host selective experiment was conducted to measure host-preference of honey-fed A. asychis females at different ages, using the second and fourth instars of the green peach aphid Myzus persicae as their hosts. The results showed that the choice of host-instar for oviposition was significantly influenced by the parasitoid age. Honey-fed parasitoids in the age groups of 1, 5, 10 and 20 days tended to parasitize predominantly second-instar aphids, whereas 15-days old parasitoids showed no significant preference of host instars. On the other hand, host-feeding preference was not affected by parasitoid age. Parasitoid females of all ages preferred younger aphids to older aphids. This result could help evaluate the effectiveness of A. asychis for biological control of M. persicae when they encountered mixed-instar aphids in the field. In addition, the results might be helpful in assessing the host killing effects of other host-feeding parasitoids.  相似文献   

2.
Host feeding is the consumption of host tissue by the adult female parasitoid. We studied the function of destructive host feeding and its advantage over non‐destructive feeding on host‐derived honeydew in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We allowed parasitoids to oviposit until they attempted to host feed. We either prevented or allowed host feeding. Parasitoids had access to sucrose solution, with or without additional access to honeydew. Parasitoids that were allowed to host feed did not have a higher egg load 20 or 48 h after host feeding than parasitoids prevented from host feeding. Host feeding did not increase the number of eggs matured within these periods, nor did the time spent host feeding positively affect any of these response variables. On the other hand, the presence of honeydew did have a positive effect on egg load 20 and 48 h after host feeding compared with parasitoids deprived of honeydew. Parasitoids with access to honeydew matured more eggs within these periods than honeydew‐deprived parasitoids. Host feeding increased life expectancy, but this effect was nullified when honeydew was supplied after the host‐feeding attempt. In conclusion, feeding on honeydew could be an advantageous alternative to host feeding in terms of egg quantity and longevity. This applies especially to parasitoids exploiting Homoptera, because these parasitoids can obtain honeydew from the host itself. It is possible that destructive host feeding has evolved to enable females to sustain the production of high‐quality anhydropic eggs, which may be important in the parasitoid's natural environment. We argue that future studies should take natural alternative food sources into more consideration.  相似文献   

3.
Until now, mathematical models of parasitoid-host interactions have not incorporated the tendency for destructively host-feeding parasitoids to partition their feeding and oviposition behaviour in relation to different host stages. A literature survey reveals a trend for female parasitoids to feed preferentially or exclusively on earlier host stages and to oviposit preferentially or exclusively in/or later ones. We explore the relative advantages to host-feeding parasitoids of a number of possible host stage selection strategies. We develop hypotheses, formalizing and testing them using modifications to our earlier simulation model of host-feeding strategies (Jervis and Kidd, 1986). We conclude from our modelling that the advantage to be gained from feeding on early host stages and ovipositing in late ones is likely to be associated with: 1) reduced handling times when feeding on early stage hosts; 2) reduced wastage of progeny from mortality factors other than host-feeding by the parent parasitoid, achieved by confining oviposition to late host stages; and 3) reduced probability of progeny mortality resulting from the parent's host-feeding activities.  相似文献   

4.
Insect parasitoids lay their eggs in arthropods. Some parasitoid species not only use their arthropod host for oviposition but also for feeding. Host feeding provides nutrients to the adult female parasitoid. However, in many species, host feeding destroys an opportunity to oviposit. For parasitoids that attack Homoptera, honeydew is a nutrient‐rich alternative that can be directly imbibed from the host anus without injuring the host. A recent study showed that feeding on host‐derived honeydew can be an advantageous alternative in terms of egg quantity and longevity. Here we explore the conditions under which destructive host feeding can provide an advantage over feeding on honeydew. For 5 days, Encarsia formosa Gahan (Hymenoptera: Aphelinidae) parasitoids were allowed daily up to 3 h to oviposit until host feeding was attempted. Host feedings were either prevented or allowed and parasitoids had ad libitum access to honeydew between foraging bouts. Even in the presence of honeydew, parasitoids allowed to host feed laid more eggs per hour of foraging per host‐feeding attempt than parasitoids that were prevented from host feeding. The higher egg‐laying rate was not compromised by survival or by change in egg volume over time. In conclusion, host feeding can provide an advantage over feeding on honeydew. This applies most likely under conditions of high host density or low extrinsic mortality of adult parasitoids, when alternative food sources cannot supply enough nutrients to prevent egg limitation. We discuss how to integrate ecological and physiological studies on host‐feeding behavior  相似文献   

5.
Optimal host selection models based on dynamic programming predict that the physiological state of a foraging insect, i.e. egg load, energy reserves etc., influences behavioral decisions. To test this prediction, the effect of physiological state on host acceptance of the ectoparasitic wasp Agrothereutes lanceolatus was investigated. Female wasps in plastic cups (regarded as patches) were presented with hosts, and their responses to the hosts were continuously observed. After observations, the wasps were dissected and the number of mature and immature eggs they carried were counted. The results showed that behavioral decisions by the female wasps were influenced by mature egg load, but not by wasp size or immature egg load. Hence the wasps with higher egg loads were more likely to oviposit. The number of hosts previously encountered in a patch (i.e. wasp experience) also had an independent effect on females' host acceptance, indicating that female informational state was updated during foraging in that patch. Female wasps host-fed only when mature egg load approached zero. Concurrent host-feeding was not observed. Parasitoid survival was almost zero when parasitoid eggs were transferred onto hosts that were fed upon, indicating that concurrent host-feeding could cause a high degree of offspring mortality. These three results supported the assumption and prediction of optimal host-feeding models. Parasitoid host selection and host-feeding are discussed in the context of recent models.  相似文献   

6.
营养改变对潜蝇姬小蜂寄生行为和寄主取食行为的影响   总被引:1,自引:0,他引:1  
为了研究营养状态对卵育型寄生蜂潜蝇姬小蜂Diglyphus isaea (Walker)雌蜂的寄主取食行为和产卵寄生行为及其二者行为权衡的影响, 在培养皿条件下, 比较了饥饿、加蜂蜜水和不加蜂蜜水3种营养状态的潜蝇姬小蜂雌蜂对美洲斑潜蝇Liriomyza sativae Blanchard各龄幼虫(低、中、高)的寄生、取食及致死能力。结果表明: 非选择条件下, 3种营养状态寄生蜂对高龄幼虫均具有较高的寄生率, 对中龄幼虫具有较高的取食率, 致死率和致死量之间存在显著性差异。3种状态的寄生蜂对低龄幼虫均没有表现出致死能力。有选择条件下, 饥饿状态的寄生蜂对寄主的寄生率最低(5.0%±1.6%), 取食率最高(16.0%±2.9%), 特别是对高龄幼虫的取食率占到了整个寄主食物取食率的91.9%; 加蜂蜜水状态下, 寄生蜂对寄主有最低的取食率(8.3%±0.9%)和致死率(17.7%±1.1%); 不加蜂蜜水状态下, 寄生蜂对寄主有最高的寄生率(13.3%±1.1%)和致死率(28.4%±1.8%)。综合分析发现, 取食寄主的雌蜂比取食蜂蜜水的雌蜂具有更强的致死能力和活动能力。  相似文献   

7.
We developed a dynamic state variable model for studying optimal host‐handling strategies in the whitefly parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae). We assumed that (a) the function of host feeding is to gain nutrients that can be matured into eggs, (b) oögenesis is continuous and egg load dependent, (c) parasitoid survival is exponentially distributed and (d) parasitoids encounter hosts randomly, are autogenous and have unlimited access to non‐host food sources to obtain energy for maintenance and activity. The most important prediction of the model is that host feeding is maladaptive under field conditions of low host density (0.015 cm?2) and short parasitoid life expectancy (maximum reproductive period of 7 d). Nutrients from the immature stage that can be matured into eggs are sufficient to prevent egg limitation. Both host density and parasitoid life expectancy have a positive effect on the optimal host‐feeding ratio. Parasitoids that make random decisions gain on average only 35% (0.015 hosts cm?2) to 60% (1.5 hosts cm?2) of the lifetime reproductive success of parasitoids that make optimal decisions, independent of their life expectancy. Parameters that have a large impact on lifetime reproductive success and therefore drive natural selection are parasitoid life expectancy and the survival probability of deposited eggs (independent of host density), the number of host encounters per day (when host density is low) and the egg maturation rate and number of host types (when host density is high). Explaining the evolution of host‐feeding behaviour under field conditions requires field data showing that life expectancy in the field is not as short as we assumed, or may require incorporation of variation in host density. Incorporating variation in walking speed, parasitised host types or egg resorption is not expected to provide an explanation for the evolution of host‐feeding behaviour under field conditions.  相似文献   

8.
寄生蜂取食寄主特性及其在害虫生物防治中的作用   总被引:2,自引:1,他引:1  
许多寄生性天敌昆虫的雌虫不仅寄生寄主, 而且还能取食寄主。在卵育型(synovigenic)寄生蜂类群中, 取食寄主行为是较为普遍的现象。本文综合近20年相关研究进展, 从寄生蜂类群、取食类型、生态学意义及影响因子等方面对寄生蜂的取食寄主行为进行了归纳总结。寄生蜂通过取食不仅可以杀死寄主, 直接起到控制害虫种群数量的作用, 还能通过取食策略为卵的成熟和再生提供营养来源, 对延长雌虫的寿命也有一定的帮助。对取食寄主行为的了解可为筛选优势寄生性天敌种类、评估寄生蜂在害虫生物防治中的作用提供重要信息。  相似文献   

9.
Food-deprived host-feeding parasitoids kill more pest insects   总被引:1,自引:0,他引:1  
Some parasitoids not only parasitize their hosts but also destructively feed on them which could result in host mortality. We hypothesized that host-feeding parasitoids that are food-deprived before being released for biological control would destructively feed on more hosts, and an optimal duration of food deprivation of parasitoids would enhance host feeding without negatively affecting parasitism. We investigated the effects of food-deprivation durations (0, 3, 6, 10, 24 h and 20% honey solution offered), before being released, on the host mortality and parasitism by a destructive host-feeding parasitoid of whitefly nymphs, Encarsia sophia (Girault & Dodd) (Hymenoptera: Aphelinidae). In another experiment, we compared host feeding, parasitization and longevity throughout the lifespan between food-deprived and non-food-deprived parasitoids. Using fourth-instar Bemisia tabaci B biotype as the host, the responses of E. sophia differed significantly with the durations of food deprivation before they were exposed to their hosts. E. sophia adults food-deprived for 6 h killed more hosts through feeding than those that were food-deprived for 0, 3, 10 and 24 h or those that were fed with honey solution. Moreover, parasitoids that were food-deprived for 6 h parasitized more hosts than those held for other durations of food deprivation. Similar results on host-feeding were found when third-instar whitefly nymphs were used. We confirmed that E. sophia food-deprived for 6 h not only killed more whiteflies through host feeding, but also lived significantly longer and parasitized more hosts than the non-food-deprived ones throughout their lifespan. Our results could be extended to improve the effectiveness of augmentative biological control of pests through improved host feeding and parasitizing capacity by starving the parasitoids for a certain period of time before they will be used.  相似文献   

10.
Summary The behavioural decisions of insect parasitoids have been the subject of dynamic state variable models, which explicitly incorporate the physiological state of the parasitoid, e.g. her age and egg load (number of mature eggs). Such models have been most recently applied to parasitoid host feeding, the consumption of host body fluids or tissues by the adult female wasp. The models developed to date, and recent empirical work withAphytis melinus, have highlighted the importance of the physiology associated with host feeding to the behavioural decision whether to host feed or oviposit. Below, I develop a new dynamic state variable model which incorporates the physiological features associated with host feeding inAphytis. My intention is to make qualitative predictions about the effects of various physiological featues on host-feeding behaviour and to make quantitative predictions about the relationship between egg load and host feeding inAphytis.  相似文献   

11.
ABSTRACT.
  • 1 Daily patterns of oviposition and host-feeding were examined in Coccophagus bartletti Annecke & Insley. Females began to host-feed and oviposit during the second or third day after emergence. Thereafter, both activities occurred regularly.
  • 2 During long observation periods (5 h) most oviposition (93%) and host-feeding (90%) occurred within the first 3.5 h of wasps first encountering hosts. Experiments demonstrated that levels of activity were low for the rest of the day, and nocturnal oviposition occurred only if wasps had no alternative.
  • 3 Dissection of female wasps that had been exposed to hosts, or withheld from them, for given periods of time, revealed that activity levels are governed by egg availability. Dispersal activity may also be influenced by the physiological state of the ovaries.
  • 4 Production of a full complement of eggs (at 24±1°C (12 h L) and 18±1°C (12 h D)) took 48h or longer after host-feeding, and if wasps were withheld from hosts and provided with honey, the effects of egg resorption could be detected after about 10 days. Trends in oögenesis and oösorption in C. bartletti females seem not to conform with interpretations of oögenesis-oösorption cycles in other parasitoids.
  • 5 The pattern of activity exhibited by C. bartletti females is not inflexible, but the major aspects mentioned above are species-specific. In general, information is needed about daily and hourly patterns of parasitoid oviposition and host-feeding before experiments are designed to test theories of parasitoid behaviour. Interpretation may otherwise rest on assumptions about their physiological condition.
  相似文献   

12.
The diet of adult females of the parasitoid Aphytis melinus DeBach (Hymenoptera: Aphelinidae) includes host insects and sugar-rich foods such as nectar and honeydew. We compared the contributions of host feeding to longevity and fecundity in A. melinus females in the presence and in the absence of honey meals. First, we assessed the longevity of females that were not allowed to oviposit. While the longevity of females fed honey was significantly increased by host feeding (median ages were 30.5 days for host-fed females and 17 days for females not allowed to host feed), the lifespan of parasitoids not fed honey did not exceed 3 days for any individual and there was no effect of host feeding on longevity in this group. In the second set of experiments, we assessed the fecundity and longevity of females allowed to oviposit. We conducted two experiments, one in which honey was continuously available, and one in which honey was not available. In both experiments, daily observations were made of females that were either allowed to host feed or manually prevented from host feeding. In the presence of honey, host feeding significantly increased both fecundity and longevity, and in the absence of honey, parasitoids died within 2 days and host feeding had no significant effect on either fecundity or longevity. The lifetime fecundity of females fed honey but not hosts exceeded the initial egg complement by 60% on average. Approximately one host per day was used for host feeding whether honey was supplied or not, and each host-feeding meal contributed approximately 3.9 eggs to the lifetime fecundity of honey-fed females. In the last experiment, we compared the rate of egg resorption over a 36-h period in A. melinus females that were deprived of hosts and either fed honey or starved. While no egg resorption was detected in honey-fed females over this time period, starved females resorbed approximately 9 eggs. Thus, the availability of a sugar-rich food interacts strongly with host feeding in influencing longevity and fecundity and has a strong direct effect on egg resorption.  相似文献   

13.
A dynamic optimization model is presented for the decision to host feed or oviposit on hosts by female parasitoids. Optimal host utilization decisions are compared between two host types with different fitness payoffs for oviposition. The model predicts that hosts of higher fitness value should always be used for oviposition unless the egg load approaches zero. This general prediction is not influenced by levels of host availability or metabolic reserves, the age of the parasitoid, or the magnitude of the fitness difference. An egg-load threshold is predicted above which lower value hosts should be used for oviposition and below which they are used for host feeding. The position of this egg-load threshold is higher when the difference in fitness between host types is larger. The threshold is also higher when overall host availability is high or metabolic reserves for the production of new eggs are low. The threshold for oviposition on low-value hosts decreases to zero near the end of the parasitoid’s life. Under conditions where high-value hosts are rarely encountered compared to low-value hosts, the model predicts that lower value hosts should be accepted for oviposition at a lower egg-load threshold.  相似文献   

14.
15.
Abstract.
  • 1 For the understanding of the influence of natural selection on the persistence of host selection behaviour in populations of Drosophila parasitoids it is important to know whether parasitoids will become time- or egg-limited. We investigated whether the Drosophila parasitoid Leptopilina clavipes (Hartig) meets egg- or time-limited conditions in the field.
  • 2 To this end the following aspects of the parasitoid's life were studied: egg load at emergence, travelling velocity between patches, patch residence times, oviposition rates and life expectancy. Together with the results from earlier studies on host and patch distributions, this formed the input of a ‘Monte Carlo’ simulation model, in which the life history of an individual parasitoid can be traced.
  • 3 The simulations revealed that under the conditions found in the field 12.9% of the parasitoid population is egg-limited. The model was also run for a number of scenarios which reflect ‘good’ or ‘bad’ circumstances. In most cases a significant proportion of the parasitoid population proved to be egg-limited.
  • 4 For the measurement of travelling velocities and patch residence times a marking method, especially applicable to small-sized parasitoids such as L.clavipes, is described. Marking did not affect survival, host habitat location or host detection rate. Parasitoids were found to be attracted to the odour of fruit-bodies of Phallus impudicus, the most important breeding substrate of their hosts.
  相似文献   

16.
Parasitoids in the genera Encarsia and Eretmocerus (Hymenoptera: Aphelinidae) are important biological control agents of whiteflies through their reproductive as well as host‐feeding activities. The feeding capacities of female parasitoids of three species with different reproductive strategies [Encarsia sophia (Girault & Dodd), Encarsia formosa Gahan, and Eretmocerus melanoscutus Zolnerowich & Rose] on their host, sweetpotato whitefly, Bemisia tabaci (Gennadius) biotype B (Homoptera: Aleyrodidae), were evaluated on cabbage in a single‐instar no‐choice experiment in the laboratory and a mixed‐instar choice experiment in the greenhouse. In both single‐ and mixed‐instar experiments, significant differences in host‐feeding capacities were found among the three parasitoid species. Encarsia sophia exhibited superior capacity of host‐feeding compared to E. formosa and E. melanoscutus. In the single‐instar experiment, parasitoids fed more on younger (smaller) hosts than older (larger) hosts. In the mixed‐instar experiments, all three parasitoid species exhibited a clear preference for feeding on older hosts compared to younger hosts. Total number of whitefly nymphs fed on by E. sophia was approximately three times that of the other two parasitoid species. Whitefly mortality accounted for by host‐feeding by E. sophia was up to 59.7%, and, thus, equivalent to parasitization. The significance of host‐feeding of E. sophia for biological control of B. tabaci is discussed.  相似文献   

17.
Neochrysocharis formosa (Westwood), an important biocontrol agent of agromyzid leafminers worldwide, is a host-feeding, idiobiont parasitoid. Female wasps have three types of host-killing behaviors: reproductive (parasitism), non-reproductive host feeding (host feeding), and host stinging without oviposition or feeding (host stinging). In this study, we compared the life history and host-killing behaviors of female parasitoids under four adult diets: starvation, hosts only, hosts plus honey (10% w/v honey solution), and honey only. Furthermore, we analyzed the host-feeding and oviposition preferences of adult females in the hosts-only and hosts-plus-honey treatments. Female parasitoids feeding on hosts had significantly increased longevity, higher fecundity, more host-stinging events, and caused a higher total host mortality than parasitoids in the starvation treatment. The honey supplement significantly increased longevity, fecundity, host-stinging events, and total host mortality, as well as average daily fecundity, but did not alter host-feeding events, host-stinging events, or daily total host mortality. However, the honey supplement did reduce the number of daily host-feeding events and induced a shift toward oviposition. Finally, we found that the non-reproductive host killing caused by host feeding and host stinging enhanced the control potential of N. formosa. These results should contribute to a better understanding of the biocontrol efficiency of destructive host feeders.  相似文献   

18.
Larvae of Anastrepha suspensa that were in the first day of the third instar were parasitized by females of the solitary endoparasitoid, Biosteres longicaudatus. At the end of the 6-hr oviposition period, larvae were ligated posterior to the ring gland so that some larvae had parasitoids anterior to the ligature while in others, the parasitoids were in the abdomen, posterior to the ligature. Ninety-two percent of the parasitoids anterior to the ligature hatched to the first through third instars. Parasitoids posterior to the ligature had a 75% egg hatch to the first instar only. No larval molts to the second or subsequent instars occurred in these parasitoids. Upon parabiosis to 3-day-old, unparasitized host pupae, the ligated larvae pupated and 97% of the first-instar parasitoids in these parabiosed larval abdomens molted to the second instar. Newly laid parasitoid eggs transplanted to 3-day-old pupal hosts had less than one-third of the egg hatch of those transplanted to first-day third-instar hosts. The data implicate the physiological state of the host (vis-a-vis pupation and associated events) as being an important factor in the development of the endoparasitoid.  相似文献   

19.
20.
Abstract.
  • 1 The pay-off from an egg laid in a parasitized host is an important parameter in models on adaptive superparasitism in solitary insect parasitoids.
  • 2 For Leptopilina heterotoma, a parasitoid of larval Drosophila, the pay-off from a second egg laid in a host is 0.43 offspring when the interval between the two ovipositions is less than 3h. For longer intervals, this pay-off decreases to almost zero for an interval of 24 h.
  • 3 When a female encountering a parasitized host is able to estimate the interval since the first oviposition, it is expected that she will take this into account in her host selection decisions. This is, however, not in the direct interest of the female that lays the first egg, and marks the host.
  • 4 We studied whether superparasitism in hosts containing a young egg is more common than in hosts containing an older egg, when searching in a patch containing once-parasitized and unparasitized hosts.
  • 5 The acceptance/encounter ratio of parasitized hosts increased for intervals longer than 6h, as predicted when the interests of the marking female and the longevity of the mark are taken into account.
  • 6 Superparasitism occurred more often when parasitoids had previously searched a host patch 7 days before the experiment compared to when parasitoids had searched a patch 1 day before, a phenomenon predicted by dynamic optimal diet models.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号