首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Urea is an important and dynamic natural component of marine nitrogen cycling and also a major contributor to anthropogenic eutrophication of coastal ecosystems, yet little is known about the identities or diversity of ureolytic marine microorganisms. Primers targeting the gene encoding urease were used to PCR‐amplify, clone and sequence 709 urease gene fragments from 31 plankton samples collected at both estuarine and open‐ocean locations. Two hundred and eighty‐six amplicons belonged to 22 distinct sequence types that were closely enough related to named organisms to be identified, and included urease sequences both from typical marine planktonic organisms and from bacteria usually associated with terrestrial habitats. The remaining 423 amplicons were not closely enough related to named organisms to be identified, and belonged to 96 distinct sequence types of which 43 types were found in two or more different samples. The distributions of unidentified urease sequence types suggested that some represented truly marine microorganisms while others reflected terrestrial inputs to low‐salinity estuarine areas. The urease primers revealed this great diversity of ureolytic organisms because they were able to amplify many previously unknown, environmentally relevant urease genes, and they will support new approaches for exploring the role of urea in marine ecosystems.  相似文献   

6.
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon‐degrading bacteria from the water column. No oil‐induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight‐chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.  相似文献   

7.
Whitehead LA  Stosz SK  Weiner RM 《Cytobios》2001,106(Z1):99-117
A marine bacterium strain 2-40 (2-40) degraded numerous complex carbohydrates, such as agar, chitin and alginate. It may play an important role in altering carbon fluxes in marine environments. End-product analyses revealed that 2-40 synthesized an agarase system that consisted of at least three enzymes, beta-agarase I, beta-agarase II and alpha-agarase, which acted in concert to degrade polymeric agar to D-galactose and 3,6-anhydro-L-galactose. The agarase system was shown to be both cell envelope-associated and extracellular, with the relative concentrations depending on the growth phase. The principal depolymerase, a beta-agarase I, hydrolysed agar to both neoagarotetrose and neoagarobiose, as identified by thin layer chromatography. This agarase had a mass of 98 kD and a Pi of 4.3. The agarase system was repressed by D-glucose and D-galactose and induced by agar, agarose, neoagarobiose, neoagarotetrose and neoagarohexose.  相似文献   

8.
We know very little about species distributions in prokaryotic marine plankton. Such information is very interesting in its own right, and ignorance of it is also beginning to hamper process studies, such as those on viral infection. New DNA- and RNA-based approaches avoid many prior limitations. Here we discuss four such applications: (1) cloning and sequencing of 16S rRNA genes to produce lists of what types of organisms are present; (2) quantification of these individual types in marine samples by nucleic acid hybridization, including single cell fluorescence; (3) quantitative comparison by DNA-DNA hybridization of entire microbial communities in terms of shared common types, without knowledge of community components; and (4) finding cultures that are representative of native communities. Several previously uncharacterized types of bacteria and archaea (probably including novel phyla) are present in marine plankton. Evidence from both the Atlantic and Pacific suggests that as-of-yet uncultivated archaea may dominate the deep sea, and thus may be the most abundant group of organisms on Earth. Such archaea are in surface waters as well, and can be visualized with fluorescent probes and enriched at room temperature with addition of organic nutrients. Community hybridization shows that variability of microbial community compositions in time and space is high. Although most native bacteria do not grow in culture, some proteobacterial cultures appear by genomic hybridization to be representative of certain communities. These and other results indicate the utility of DNA- and RNA-based methods.  相似文献   

9.
Aims: To characterize atrazine‐degrading potential of bacterial communities enriched from agrochemical factory soil by analysing diversity and organization of catabolic genes. Methods and Results: The bacterial communities enriched from three different sites of varying atrazine contamination mineralized 65–80% of 14C ring‐labelled atrazine. The presence of trzN‐atzBC‐trzD, trzN‐atzABC‐trzD and trzN‐atzABCDEF‐trzD gene combinations was determined by PCR. In all enriched communities, trzN‐atzBC genes were located on a 165‐kb plasmid, while atzBC or atzC genes were located on separated plasmids. Quantitative PCR revealed that catabolic genes were present in up to 4% of the community. Restriction analysis of 16S rDNA clone libraries of the three enrichments revealed marked differences in microbial community structure and diversity. Sequencing of selected clones identified members belonging to Proteobacteria (α‐, β‐ and γ‐subclasses), the Actinobacteria, Bacteroidetes and TM7 division. Several 16S rRNA gene sequences were closely related to atrazine‐degrading community members previously isolated from the same contaminated site. Conclusions: The enriched communities represent a complex and diverse bacterial associations displaying heterogeneity of catabolic genes and their functional redundancies at the first steps of the upper and lower atrazine‐catabolic pathway. The presence of catabolic genes in small proportion suggests that only a subset of the community has the capacity to catabolize atrazine. Significance and Impact of the Study: This study provides insights into the genetic specificity and the repertoire of catabolic genes within bacterial communities originating from soils exposed to long‐term contamination by s‐triazine compounds.  相似文献   

10.
11.
Climate change is inducing deep modifications in local communities worldwide as a consequence of individualistic species range shifts. Understanding how complex interaction networks will be reorganized under climate change represents a major challenge in the fields of ecology and biogeography. However, forecasting the potential effects of climate change on local communities, and more particularly on food‐web structure, requires the consideration of highly structuring processes, such as trophic interactions. A major breakthrough is therefore expected by combining predictive models integrating habitat selection processes, the physiological limits of marine species and their trophic interactions. In this study, we forecasted the potential impacts of climate change on the local food‐web structure of the highly threatened Gulf of Gabes ecosystem located in the south of the Mediterranean Sea. We coupled the climatic envelope and habitat models to an allometric niche food web model, hence taking into account the different processes acting at regional (climate) and local scales (habitat selection and trophic interactions). Our projections under the A2 climate change scenario showed that future food webs would be composed of smaller species with fewer links, resulting in a decrease of connectance, generality, vulnerability and mean trophic level of communities and an increase of the average path length, which may have large consequences on ecosystem functioning. The unified framework presented here, by connecting food‐web ecology, biogeography and seascape ecology, allows the exploration of spatial aspects of interspecific interactions under climate change and improves our current understanding of climate change impacts on local marine food webs.  相似文献   

12.
Bacterial communities degrading amino- and hydroxynaphthalene-2-sulfonates   总被引:1,自引:0,他引:1  
A 6-aminonaphthalene-2-sulfonic acid (6A2NS)-degrading mixed bacterial community was isolated from a sample of river Elbe water. The complete degradation of this xenobiotic compound may be described by a mutualistic interaction of two Pseudomonas strains isolated from this culture. One strain, BN6, could also grow on 6A2NS in monoculture, however, with accumulation of black polymers. This organism effected the initial conversion of 6A2NS into 5-aminosalicylate (5AS) through regioselective attack of the naphthalene skeleton in the 1,2-position. 5AS was totally degraded by another member of the community, strain BN9. After prolonged adaptation of strain BN6 to growth on 6A2NS, this organism readily converted all naphthalene-2-sulfonates with OH- or NH2-substituents in the 5-, 6-, 7-, or 8-position. The corresponding hydroxy- or aminosalicylates were excreted in stoichiometric amounts, with the exception that the metabolite from 5A2NS oxidation was not identical with 6AS.  相似文献   

13.
目的分离及筛选降解海水养殖区甲胺磷的降解菌,并确定最适的降解条件。方法从被有机磷污染的海水样中分离,以有机磷为唯一碳源反复驯化,分离筛选出1株高效降解甲胺磷的菌株M-1,并对其降解能力和所需条件进行测试。通过离子交换层析、凝胶过滤层析等方法从发酵液中分离纯化了有机磷农药降解酶。结果初步鉴定菌株M-1属于腊样芽胞杆菌。菌株M-1最适生长温度和pH分别为25℃和8.0。Zn^2+(200mg/L)、Cd^2+(50mg/L)与Pb^2+(200mg/L)不影响菌株M-1对甲胺磷的降解作用,但Cu^2+(50mg/L)、Cr^2+(50mg/L)对菌株M-1有毒性作用。SDS-PAGE测得降解菌的有机磷农药降解酶的分子质量约为45kD。结论海洋微生物在甲胺磷污染的海水养殖区自净中起着重要作用。  相似文献   

14.
15.
Aims: To isolate and identify alkane‐degrading bacteria from deep‐sea superficial sediments sampled at a north‐western Mediterranean station. Methods and Results: Sediments from the water/sediment interface at a 2400 m depth were sampled with a multicorer at the ANTARES site off the French Mediterranean coast and were promptly enriched with Maya crude oil as the sole source of carbon and energy. Alkane‐degrading bacteria belonging to the genera Alcanivorax, Pseudomonas, Marinobacter, Rhodococcus and Clavibacter‐like were isolated, indicating that the same groups were potentially involved in hydrocarbon biodegradation in deep sea as in coastal waters. Conclusions: These results confirm that members of Alcanivorax are important obligate alkane degraders in deep‐sea environments and coexist with other degrading bacteria inhabiting the deep‐subsurface sediment of the Mediterranean. Significance and Impact of the Study: The results suggest that the isolates obtained have potential applications in bioremediation strategies in deep‐sea environments and highlight the need to identify specific piezophilic hydrocarbon‐degrading bacteria (HCB) from these environments.  相似文献   

16.
Over the last decades, post‐illumination bursts (PIBs) of isoprene, acetaldehyde and green leaf volatiles (GLVs) following rapid light‐to‐dark transitions have been reported for a variety of different plant species. However, the mechanisms triggering their release still remain unclear. Here we measured PIBs of isoprene‐emitting (IE) and isoprene non‐emitting (NE) grey poplar plants grown under different climate scenarios (ambient control and three scenarios with elevated CO2 concentrations: elevated control, periodic heat and temperature stress, chronic heat and temperature stress, followed by recovery periods). PIBs of isoprene were unaffected by elevated CO2 and heat and drought stress in IE, while they were absent in NE plants. On the other hand, PIBs of acetaldehyde and also GLVs were strongly reduced in stress‐affected plants of all genotypes. After recovery from stress, distinct differences in PIB emissions in both genotypes confirmed different precursor pools for acetaldehyde and GLV emissions. Changes in PIBs of GLVs, almost absent in stressed plants and enhanced after recovery, could be mainly attributed to changes in lipoxygenase activity. Our results indicate that acetaldehyde PIBs, which recovered only partly, derive from a new mechanism in which acetaldehyde is produced from methylerythritol phosphate pathway intermediates, driven by deoxyxylulose phosphate synthase activity.  相似文献   

17.
Novel high‐pressure biotechnical systems that were developed and applied for the study of anaerobic oxidation of methane (AOM) are described. The systems, referred to as high‐pressure continuous incubation system (HP‐CI system) and high‐pressure manifold‐incubation system (HP‐MI system), allow for batch, fed‐batch, and continuous gas‐phase free incubation at high concentrations of dissolved methane and were designed to meet specific demands for studying environmental regulation and kinetics as well as for enriching microbial biomass in long‐term incubation. Anoxic medium is saturated with methane in the first technical stage, and the saturated medium is supplied for biomass incubation in the second stage. Methane can be provided in continuous operation up to 20 MPa and the incubation systems can be operated during constant supply of gas‐enriched medium at a hydrostatic pressure up to 45 MPa. To validate the suitability of the high‐pressure systems, we present data from continuous and fed‐batch incubation of highly active samples prepared from microbial mats from the Black Sea collected at a water depth of 213 m. In continuous operation in the HP‐CI system initial methane‐dependent sulfide production was enhanced 10‐ to 15‐fold after increasing the methane partial pressure from near ambient pressure of 0.2 to 10.0 MPa at a hydrostatic pressure of 16.0 MPa in the incubation stage. With a hydraulic retention time of 14 h a stable effluent sulfide concentration was reached within less than 3 days and a continuing increase of the volumetric AOM rate from 1.2 to 1.7 mmol L?1 day?1 was observed over 14 days. In fed‐batch incubation the AOM rate increased from 1.5 to 2.7 and 3.6 mmol L?1 day?1 when the concentration of aqueous methane was stepwise increased from 5 to 15 mmol L?1 and 45 mmol L?1. A methane partial pressure of 6 MPa and a hydrostatic pressure of 12 MPa in manifold fed‐batch incubation in the HP‐MI system yielded a sixfold increase in the volumetric AOM rate. Over subsequent incubation periods AOM rates increased from 0.6 to 1.2 mmol L?1 day?1 within 26 days of incubation. No inhibition of biomass activity was observed in all continuous and fed‐batch incubation experiments. The organisms were able to tolerate high sulfide concentrations and extended starvation periods. Biotechnol. Bioeng. 2010; 105: 524–533. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
Lipid biomarker assemblages preserved within the bitumen and kerogen phases of sedimentary rocks from the ca. 780–729 Ma Chuar and Visingsö Groups facilitate paleoenvironmental reconstructions and reveal fundamental aspects of emerging mid‐Neoproterozoic marine communities. The Chuar and Visingsö Groups were deposited offshore of two distinct paleocontinents (Laurentia and Baltica, respectively) during the Tonian Period, and the rock samples used had not undergone excessive metamorphism. The major polycyclic alkane biomarkers detected in the rock bitumens and kerogen hydropyrolysates consist of tricyclic terpanes, hopanes, methylhopanes, and steranes. Major features of the biomarker assemblages include detectable and significant contribution from eukaryotes, encompassing the first robust occurrences of kerogen‐bound regular steranes from Tonian rocks, including 21‐norcholestane, 27‐norcholestane, cholestane, ergostane, and cryostane, along with a novel unidentified C30 sterane series from our least thermally mature Chuar Group samples. Appreciable values for the sterane/hopane (S/H) ratio are found for both the free and kerogen‐bound biomarker pools for both the Chuar Group rocks (S/H between 0.09 and 1.26) and the Visingsö Group samples (S/H between 0.03 and 0.37). The more organic‐rich rock samples generally yield higher S/H ratios than for organic‐lean substrates, which suggests a marine nutrient control on eukaryotic abundance relative to bacteria. A C27 sterane (cholestane) predominance among total C26–C30 steranes is a common feature found for all samples investigated, with lower amounts of C28 steranes (ergostane and crysotane) also present. No traces of known ancient C30 sterane compounds; including 24‐isopropylcholestanes, 24‐n‐propylcholestanes, or 26‐methylstigmastanes, are detectable in any of these pre‐Sturtian rocks. These biomarker characteristics support the view that the Tonian Period was a key interval in the history of life on our planet since it marked the transition from a bacterially dominated marine biosphere to an ocean system which became progressively enriched with eukaryotes. The eukaryotic source organisms likely encompassed photosynthetic primary producers, marking a rise in red algae, and consumers in a revamped trophic structure predating the Sturtian glaciation.  相似文献   

19.
Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de‐oxygenation of the ocean's interior (~?3%) and a decrease in total marine net primary production (~?8%) under the ‘business as usual’ climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES) – ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL‐CM Earth System Model. The APECOSM model is a size‐structured bio‐energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES‐APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body‐size of the simulated pelagic communities. Biomass and maximum body‐size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low‐ and midlatitude, biomass and maximum body‐size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body‐size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body‐size organisms might be more resilient to climate change than large ones.  相似文献   

20.
Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure‐from‐motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure‐from‐motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat‐forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure‐from‐motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain‐and‐tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure‐from‐motion and photogrammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号