首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tinto River (Huelva, Spain) is a natural acidic rock drainage environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. A geomicrobiological model of the different microbial cycles operating in the sediments was recently developed through molecular biological methods, suggesting the presence of iron reducers, methanogens, nitrate reducers and hydrogen producers. In this study, we used a combination of molecular biological methods and targeted enrichment incubations to validate this model and prove the existence of those potential anaerobic activities in the acidic sediments of Tinto River. Methanogenic, sulfate-reducing, denitrifying and hydrogen-producing enrichments were all positive at pH between 5 and 7. Methanogenic enrichments revealed the presence of methanogenic archaea belonging to the genera Methanosarcina and Methanobrevibacter. Enrichments for sulfate-reducing microorganisms were dominated by Desulfotomaculum spp. Denitrifying enrichments showed a broad diversity of bacteria belonging to the genera Paenibacillus, Bacillus, Sedimentibacter, Lysinibacillus, Delftia, Alcaligenes, Clostridium and Desulfitobacterium. Hydrogen-producing enrichments were dominated by Clostridium spp. These enrichments confirm the presence of anaerobic activities in the acidic sediments of the Tinto River that are normally assumed to take place exclusively at neutral pH.  相似文献   

2.
The activities of iron-oxidizing and reducing microorganisms impact the fate of arsenic in groundwater. Phylogenetic information cannot exclusively be used to infer the potential for iron oxidation or reduction in aquifers. Therefore, we complemented a previous cultivation-independent microbial community survey covering 22 arsenic contaminated drinking water wells in Bangladesh, with the characterization of enrichments of microaerophilic iron oxidizers and anaerobic iron reducers, conducted on the same water samples. All investigated samples revealed a potential for microbial iron oxidation and reduction. Microbial communities were phylogenetically diverse within and between enrichments as was also observed in the previous cultivation-independent analysis of the water samples from which these enrichments were derived. Enrichment uncovered a larger diversity in iron-cycling microorganisms than previously indicated. The iron-reducing enrichments revealed the presence of several 16S ribosomal RNA (16S rRNA) gene sequences most closely related to Acetobacterium, Clostridium, Bacillus, Rhizobiales, Desulfovibrio, Bacteroides, and Spirochaetes, in addition to well-known dissimilatory iron-reducing Geobacter and Geothrix species. Although a large diversity of Geobacteraceae was observed, they comprised only a small part of the iron-reducing consortia. Iron-oxidizing gradient tube enrichments were dominated by Comamonadaceae and Rhodocyclaceae instead of Gallionellaceae. Forty-five percent of these enrichments also revealed the presence of the gene encoding arsenite oxidase, which converts arsenite to less toxic and less mobile arsenate. Their potential for ferric (oxyhydr)oxides precipitation and arsenic immobilization makes these iron-oxidizing enrichments of interest for rational bioaugmentation of arsenite contaminated groundwater.  相似文献   

3.
Almost equal numbers ofDesulfovibrio, Veillonella, andAcetobacterium species were found in agar shake dilutions of anaerobic intertidal brackish sediments applying L-lactate as the only energy source and sulfate as electron acceptor. Pure cultures of these bacteria were studied in more detail in batch cultures as well as in L-lactate-limited chemostats. The maximal specific growth rates on L-lactate were determined in washout experiments and amounted to 0.16, 0.30, and 0.06 h–1 forDesulfovibrio baculatus H.L21,Veillonella alcalescens NS.L49, andAcetobacterium NS.L40, respectively. Competition for L-lactate was studied in energy-limited chemostats at a dilution rate of 0.02 h–1.D. baculatus H.L21 turned out to be the best competitor at low L-lactate concentrations provided that sufficient sulfate and iron were present.V. alcalescens NS.L49 was favored by the absence of sulfate and iron. Coexistence ofD. baculatus H.L21 andV. alcalescens NS.L49 was observed in a L-lactate-limited chemostat with additional sulfate and citrate. Syntrophic growth ofV. alcalescens NS.L49 andAcetobacterium NS.L40 occurred in a L-lactate-limited chemostat in the absence of sulfate. No coexistence betweenD. baculatus H.L21 andAcetobacterium NS.L40 was observed in a L-lactate-limited chemostat without sulfate. Addition of calcium-saturated illite to an energy-limited mixed culture ofV. alcalescens NS.L49 andAcetobacterium NS.L40 induced iron limitation and subsequent washout of theAcetobacterium species. Finally, the ecological niches of the 3 species in relation to the consumption of lactate were discussed.  相似文献   

4.

Bacterial populations exist at great depths in marine sediments, but little is known about the type and characteristics of organisms in this unique bacterial environment. Cascadia Margin sediments from the Pacific Ocean have deep bacterial activity and bacterial populations, which are stimulated around a gas hydrate zone (215–225 m below sea floor [mbsf]). Bacterial sulfate reduction is the dominant anaerobic process within these sediments, and the depth distribution of sulfate‐reducing activity corresponds with distributions of viable sulfate‐reducing bacteria (SRB). Anaerobically stored sediments from this site were used to isolate sulfate‐reducing bacteria using a temperature‐gradient system, elevated pressure and temperatures, different media, and a range of growth substrates. A variety of enrichments on lactate were obtained from 0.5 and 222 mbsf, with surprisingly more rapid growth from the deeper sediments. The temperature range of enrichments producing strong growth from 222 mbsf was markedly wider than those from the near surface sediment (15–45°C and 9–19°C, respectively). This presumably reflects a temperature increase in deeper sediments. Only a few of these enrichments were successfully isolated due to very slow or no growth on subculture, despite the use of a wide range of different media and growth conditions. Psychrophilic and mesophilic sulfate‐reducing isolates were obtained from 0.5 m depth. As the minimum growth temperature of the mesophile (probably a Desulfotomaculum sp.) was above the in situ temperature of 3°C, it must have been present in the sediment as spores. A larger number of isolates (23) was obtained from 222 mbsf, and these barophilic SRB were closely related (based on 16S rRNA gene analysis), but not identical to, Desulfovibrio profundus, recently isolated from deep sediments from the Japan Sea. Bacteria related to D. profundus may be widespread in deep marine sediments.  相似文献   

5.
[目的]红树林沉积物中有机物丰富,通过研究认识参与难降解天然有机多聚物的微生物降解过程及其环境作用,并获得新颖的难培养厌氧微生物。[方法]对漳州九龙江河口红树林沉积物中降解纤维素、几丁质和木质素的厌氧细菌定向富集和平板分离纯化,并对其多样性进行分析。[结果]共筛选分离获得202株厌氧细菌(82株专性厌氧细菌,120株兼性厌氧细菌),包括4个疑似新属(Lachnotalea sp.MCCC 1A16036、Varunaivibrio sp.MCCC 1A15903、Clostridium sp.MCCC 1A15884、Caminicella sp.MCCC 1A17445)和4个疑似新种(Sunxiuqinia sp.MCCC 1A15904、Pseudodesulfovibrio sp.MCCC 1A16040、Pseudodesulfovibrio sp.MCCC 1A16038、Mangrovibacterium lignilyticum MCCC1A15882)。不同天然有机多聚物富集菌群分离到的优势可培养细菌主要属于变形菌门、拟杆菌门和厚壁菌门,但种群略有差异。在纤维素和几丁...  相似文献   

6.
Samples of stromatolites, microbial mats, and sediments from four saline lakes (approximate seasonal salinity ranges 20–220%o) in Western Australia were used to establish enrichments for elective cultures of aerobic and anaerobic denitrifying chemolithoautotrophs that could grow with thiosulfate as sole energy source. Organisms of these types were obtained from all sources tested. Twenty‐four pure cultures were isolated, all of which were gram‐negative, rod‐shaped bacteria exhibiting a considerable diversity of metabolic capability. Isolation of these obligate and facultative sulfur‐oxidizing chemolithotrophs from the stromatolite and mat habitats indicates the possibility that these rod‐shaped bacteria contribute to the oxidative phase of the sulfur cycle in these habitats, in addition to oxidation by phototrophs or Beggiatoa. Only four of the pure cultures could grow without salt, but all 24 showed significant halophily, some tolerating 3 M NaCl. Three novel isolates of NaCl‐dependent, thiosulfate‐oxidizing, aerobic and denitrifying obligate chemolithotrophs are described. In addition, a facultatively heterotrophic halophilic strain growing either methylotrophically on methylamine or chemolithotrophically on thiosulfate aerobically or with anaerobic denitrification was found.  相似文献   

7.
Samples from an oil storage tank (resident temperature 40 to 60 °C), which experienced unwanted periodic odorous gas emissions, contained up to 2,400/ml of thermophilic, lactate-utilizing, sulfate-reducing bacteria. Significant methane production was also evident. Enrichments on acetate gave sheathed filaments characteristic of the acetotrophic methanogen Methanosaeta thermophila of which the presence was confirmed by determining the PCR-amplified 16S rDNA sequence. 16S rDNA analysis of enrichments, grown on lactate- and sulfate-containing media, indicated the presence of bacteria related to Garciella nitratireducens, Clostridium sp. and Acinetobacter sp. These sulfidogenic enrichments typically produced sulfide to a maximum concentration of 5–7 mM in media containing excess lactate and 10 mM sulfate or thiosulfate. Both the production of sulfide and the consumption of acetate by the enrichment cultures were inhibited by low concentrations of nitrite (0.5–1.0 mM). Hence, addition of nitrite may be an effective way to prevent odorous gas emissions from the storage tank.  相似文献   

8.
A novel anaerobic consortium, named DehaloR^2, that performs rapid and complete reductive dechlorination of trichloroethene (TCE) to ethene is described. DehaloR^2 was developed from estuarine sediment from the Back River of the Chesapeake Bay and has been stably maintained in the laboratory for over 2 years. Initial sediment microcosms showed incomplete reduction of TCE to DCE with a ratio of trans- to cis- isomers of 1.67. However, complete reduction to ethene was achieved within 10 days after transfer of the consortium to sediment-free media and was accompanied by a shift to cis-DCE as the prevailing intermediate metabolite. The microbial community shifted from dominance of the Proteobacterial phylum in the sediment to Firmicutes and Chloroflexi in DehaloR^2, containing the genera Acetobacterium, Clostridium, and the dechlorinators Dehalococcoides. Also present were Spirochaetes, possible acetogens, and Geobacter which encompass previously described dechlorinators. Rates of TCE to ethene reductive dechlorination reached 2.83 mM Cl d−1 in batch bottles with a Dehalococcoides sp. density of 1.54E+11 gene copies per liter, comparing favorably to other enrichment cultures described in the literature and identifying DehaloR^2 as a promising consortium for use in bioremediation of chlorinated ethene-impacted environments.  相似文献   

9.
Aims: To isolate and identify alkane‐degrading bacteria from deep‐sea superficial sediments sampled at a north‐western Mediterranean station. Methods and Results: Sediments from the water/sediment interface at a 2400 m depth were sampled with a multicorer at the ANTARES site off the French Mediterranean coast and were promptly enriched with Maya crude oil as the sole source of carbon and energy. Alkane‐degrading bacteria belonging to the genera Alcanivorax, Pseudomonas, Marinobacter, Rhodococcus and Clavibacter‐like were isolated, indicating that the same groups were potentially involved in hydrocarbon biodegradation in deep sea as in coastal waters. Conclusions: These results confirm that members of Alcanivorax are important obligate alkane degraders in deep‐sea environments and coexist with other degrading bacteria inhabiting the deep‐subsurface sediment of the Mediterranean. Significance and Impact of the Study: The results suggest that the isolates obtained have potential applications in bioremediation strategies in deep‐sea environments and highlight the need to identify specific piezophilic hydrocarbon‐degrading bacteria (HCB) from these environments.  相似文献   

10.
Abstract

Conventional completely mixed anaerobic treatment systems limit the chances of the different species of bacteria to spatially group together according to their mutual cooperation and as a result, show a lower efficiency and vulnerability towards shock situations. It is interesting to know about the stratification of the different bacterial species participating in the degradation process and the intermediates that they produce. In this study, we established and optimized a two-phase anaerobic packed bed biofilm reactor system (AnPBR) with porous PVA gel beads used as bio-carriers and ran the reactor system in a steady state to observe the VFAs produced along with the microbial diversity of the predominant species at different stages of the reactor system. We observed that acetate and butyrate were the predominant intermediate VFAs while concentrations of other VFAs such that propionic acid were low. Acetobacterium and Clostridium were found to be the most abundant bacterial species in acidogenic reactor while methanogenic reactor was highly enriched with Methanobacterium and Methanosarcina. Apart from the above, syntrophic populations such as Syntrophobactor wolinii were also observed to be dominant in both the reactors – especially towards the end of acidogenic reactor and the initial part of the methanogenic reactor.  相似文献   

11.
A collection of nitrile-hydrolysing rhodococci was isolated from sediments sampled from a range of deep coastal, and abyssal and hadal trench sites in the NW Pacific Ocean, as part of our programme on the diversity of marine actinomycetes. Nitrile-hydrolysing strains were obtained by batch enrichments on nitrile substrates with or without dispersion and differential centrifugation pre-treatment of sediments, and were recovered from all of the depths sampled (approximately 1100–6500 m). Two isolates obtained from the Ryukyu (5425 m) and Japan (6475 m) Trenches, and identified as strains of Rhodococcus erythropolis,were chosen for detailed study. Both of the deep-sea isolates grew at in situ temperature (4°C), salinities (0–4% NaCl) and pressures (40–60 MPa), results that suggest, but do not prove, that they may be indigenous marine bacteria. However, the absence of culturable Thermoactinomycespoints to little or no run off of terrestrial microbiota into these particular trench sediments. Nitrile-hydrolysis by these rhodococci was catalysed by a nitrile hydratase–amidase system. The hydratase accommodated aliphatic, aromatic and dinitrile substrates, and enabled growth to occur on a much wider range of nitriles than the only other reported marine nitrile-hydrolysing R. erythropolis which was isolated from coastal sediments. Also unlike the latter strain, the nitrile hydratases of the deep-sea rhodococci were constitutive. The possession of novel growth and enzyme activities on nitriles by these deep-sea R. erythropolisstrains recommends their further development as industrial biocatalysts.  相似文献   

12.
The Eastern Mediterranean deep sea is one of the most oligotrophic regions in the world’s ocean. With the aim to classify bacteria from this special environment we isolated 107 strains affiliating to the Gammaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria and Bacteroidetes from sediments of the Eastern Mediterranean Sea. As determined by 16S rRNA gene sequence analysis, Actinobacteria and Firmicutes, in particular members of the genus Bacillus, were dominant and represented a remarkable diversity with 27 out of a total of 33 operational taxonomic units obtained from the untreated sediment. The considerable percentage of operational taxonomic units (42%) which may be considered to be new species underlines the uniqueness of the studied environment. In order to selectively enrich bacteria which are adapted to the deep-sea conditions and tolerate broad pressure ranges, enrichments were set up with a sediment sample under in situ pressure and temperature (28 MPa, 13.5°C) using N-acetyl-d-glucosamine as substrate. Interestingly Gammaproteobacteria were significantly enriched and dominant among the strains isolated after pressure pre-incubation. Obviously, Gammaproteobacteria have a selective advantage under the enrichment conditions applied mimicking nutrient supply under pressure conditions and cope well with sudden changes of hydrostatic pressure. However, under the continued low nutrient situation in the Eastern Mediterranean deep-sea sediments apparently Firmicutes and Actinobacteria have a clear adaptative advantage.  相似文献   

13.
Summary Anaerobic bacteria, such as sulfate-reducing bacteria and clostridia, are capable of generating H2S and organic acids which corrode metallurgy resulting in millions of dollars of damage to industry annually. The bacteria are obligate anaerobes which grow typically on equipment surfaces under deposits such as biofilms. A successful method of penetrating biofilm and killing the anaerobic bacteria specifically has not been previously presented. We have investigated whether a blend of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (metronidazole) and a biodispersant would killDesulfovibrio, Desulfotomaculum, andClostridium species grown in the laboratory and in field applications. We found the blend significantly reduced the anaerobes in laboratory cultures. However, in a bioreactor designed to induced a high level of biofilm production and enhance underdeposit growth of anaerobic bacteria, a 40–58% increase in the antibiotic-biodispersant blend concentration was required. The metronidazole blend killed obligate anaerobic bacteria specifically but was non-toxic to aerobic bacteria and fungi. These results were confirmed in cooling tower field trial studies.  相似文献   

14.
The substitution of natural gas by renewable biomethane is an interesting option to reduce global carbon footprint. Syngas fermentation has potential in this context, as a diverse range of low‐biodegradable materials that can be used. In this study, anaerobic sludge acclimatized to syngas in a multi‐orifice baffled bioreactor (MOBB) was used to start enrichments with CO. The main goals were to identify the key players in CO conversion and evaluate potential interspecies metabolic interactions conferring robustness to the process. Anaerobic sludge incubated with 0.7 × 105 Pa CO produced methane and acetate. When the antibiotics vancomycin and/or erythromycin were added, no methane was produced, indicating that direct methanogenesis from CO did not occur. Acetobacterium and Sporomusa were the predominant bacterial species in CO‐converting enrichments, together with methanogens from the genera Methanobacterium and Methanospirillum. Subsequently, a highly enriched culture mainly composed of a Sporomusa sp. was obtained that could convert up to 1.7 × 105 Pa CO to hydrogen and acetate. These results attest the role of Sporomusa species in the enrichment as primary CO utilizers and show their importance for methane production as conveyers of hydrogen to methanogens present in the culture.  相似文献   

15.

Lake Velencei (Hungary) is one of the westernmost shallow soda lakes, extending from Eastern Europe to the Carpatian basin. The spatial and temporal distribution of the sediment microbiota, the metabolic potential of bacterial communities and the species composition of the genera Bacillus and Clostridium, as well as sulphate-reducing bacteria (SRB) were investigated regarding the close interactions between the lake sediment and the overlaying water column, the special water chemical parameters, and the extensive reed coverage of the lake. Aerobic microbial activities were tested with community-level physiological profiling (CLPP) using BIOLOG microplates. The quantification of the anaerobic fermentative and sulphate-reducing bacteria was done by the MPN (Most Probable Number) method. The cultivation of bacteria adapted to the special physico-chemical characteristics of the lake was carried out employing selective media. Multivariate analysis of CLPP data indicated that the microbial communities of the sediment separated from that of the water and showed seasonal variations of the utilised carbon sources. The results of the MPN demonstrated that the counts of the fermentative and sulphate-reducing bacteria in the reed rhizosphere were about one order higher than in the sediment. Among the isolated bacterial strains, a large number were characterised as facultative or obligate alkaliphilic and also moderately halophilic. The partial sequencing of 16S rDNA of the selected representatives resulted in species of aerobic bacteria, such as Bacillus pseudofirmus, B. halmapalus, B. cohnii, B. (Marinibacillus) marinus, and anaerobes, such as Clostridium putrificum – sporogenes, C. scatologenes, C. bifermentans, Desulfotomaculum guttoideum, Desulfovibrio alcoholivorans, and Desulfovibrio burkinensis.

  相似文献   

16.
This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.  相似文献   

17.
Methanogenesis, sulfate reduction, and rates of carbon mineralization were determined for samples derived at different depths from four cores drilled at the Savannah River Plant, Aiken South Carolina. Three‐gram subsamples of the sediments were dispensed to 10‐mL serum bottles under 5% H2/95% N2 and amended with 0.5 mL degassed distilled water with or without the following solutes: formate plus acetate, bicarbonate, lactate, and radiolabeled sulfate, glucose, and Índole. After incubating 1 to 5 days, the sediments were assayed for methane, H2, 35S, and I4CO2. No methanogenesis was detected at any depth in any core and sulfate was rarely reduced. Evolution of 14CO2 from glucose and indole was detected in sediments as deep as 262 and 259 m, respectively. At some depths the 14CO2 evolution rate was comparable to that of surface soils; however, at other depths no 14CO2 evolution could be detected. Injection of sterile air into anaerobic incubations increased rates of carbon mineralization at all depths that had demonstrated anaerobic activity and stimulated mineralization activity in sediments that were inactive anaerobically, suggesting a predominance of aerobic metabolism. Increasing the concentration of added glucose and indole often increased the resulting rates of 14CO2 evolved from these substrates. Our data indicate that both aerobic and anaerobic microorganisms are present and metabolically active in samples from deep subsurface environments.  相似文献   

18.
Samples of sediments and surrounding soda soils (SS) from the extremely saline and alkaline lakes of the Wadi el Natrun in the Libyan Desert, Egypt, were obtained in October 2000. Anaerobic enrichment cultures were grown from these samples, DNA isolated, and the bacterial diversity assessed by 16S rRNA gene clone analysis. Clones derived from lake sediments (LS) most closely matched Clostridium spp., Natronoincola histidinovorans, Halocella cellulolytica, Bacillus spp., and the CytophagaFlexibacterBacteroides group. Similar clones were identified in the SS, but Bacillus spp. predominated. Many of the clones were most closely related to organisms already identified in alkaline or saline environments. Two genomic DNA libraries were made from the pooled LS enrichments and a single SS-enrichment sample. A novel cellulase activity was identified and characterized in each. The lake cellulase ORF encoded a protein of 1,118 amino acids; BLASTP analysis showed it was most closely related to an endoglucanase from Xanthomonas campestris. The soil-cellulase ORF encoded a protein of 634 amino acids that was most closely related to an endoglucanase from Fibrobacter succinogenes.  相似文献   

19.
Sediment microbial communities are important for seagrass growth and carbon cycling, however relatively few studies have addressed the composition of prokaryotic communities in seagrass bed sediments. Selective media were used enumerate culturable anaerobic bacteria associated with the roots of the seagrass, Halodule wrightii, the fresh to brackish water plant, Vallisneria americana, and the respective vegetated and unvegetated sediments. H. wrightii roots and sediments had high numbers of sulfate-reducing bacteria whereas iron-reducing bacteria appeared to have a more significant role in V. americana roots and sediments. Numbers of glucose-utilizing but not acetate-utilizing iron reducers were higher on the roots of both plants relative to the vegetated sediments indicating a difference within the iron reducing bacterial community. H. wrightii roots had lower glucose-utilizing iron reducers, and higher acetogenic bacteria than did V. americana roots suggesting different aquatic plants support different anaerobic microbial communities. Sulfur-disproportionating and sulfide-oxidizing bacteria were also cultured from the roots and sediments. These results provide evidence of the potential importance of sulfur cycle bacteria, in addition to sulfate-reducing bacteria, in seagrass bed sediments.  相似文献   

20.
Seventeen different media known to support the growth and isolation of members of the class Actinobacteria were evaluated as selective isolation media for the recovery of this microbial group from marine sediments samples collected in the Gulf of California and the Gulf of Mexico. A general selective isolation procedure was employed for six sediments and nearly 300 actinomycetes were recovered from the selective isolation plates. Full 16S rRNA gene sequencing revealed that the isolates belonged to several actinobacterial taxa, notably to the genera Actinomadura, Dietzia, Gordonia, Micromonospora, Nonomuraea, Rhodococcus, Saccharomonospora, Saccharopolyspora, Salinispora, Streptomyces, “Solwaraspora” and Verrucosispora. Previous works on marine sediments have been restricted to the isolation of members of the genera Micromonospora, Rhodococcus and Streptomyces. This study provides further evidence that Actinobacteria present in marine habitats are not restricted to the Micromonospora-Rhodococcus-Streptomyces grouping. Indeed, this first systematic study shows the extent of actinobacterial diversity that can be found in marine sediments collected in Mexico and probably, worldwide. The 16S rRNA gene sequences of marine isolates A1, AA2, AA6, AB1, AB2, AG1, AI2, AK1, AL2, AO1, AO3, AR1, AW1, B1, BB1, BC1, C5, R1, R2, R3, AV1, AE1, AI1, AN1 and AP1 determined in this study have been deposited under GenBank accession numbers EU714241–EU714258 and FJ462359–FJ462365, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号