首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
N-Myristoyltransferase (NMT) catalyses the transfer of myristate from myristoyl-CoA to the NH2-terminal glycine residue of several proteins and are important in signal transduction. STZ-induced diabetes (an animal model for insulin-dependent diabetes mellitus, IDDM) resulted in a 2-fold increase in rat liver NMT activity as compared with control animals. In obese Zucker (fa/fa) rats (an animal model for non-insulin dependent diabetes mellitus, NIDDM) there was a4.7-fold lower liver particulate NMT activity as compared with the control lean rat livers. Administration of sodium orthovanadate to the diabetic rats normalised liver NMT activity. These results would indicate that the rat liver particulate N-myristoyltransferase activity appears to be inversely proportional to the level of plasma insulin, implicating insulin in the control of N-myristoylation.Abbreviations NMT N-myristoyl-CoA:protein N-myristoyltransferase - IDDM insulin-dependent diabetes mellitus - NIDDM non-insulin-dependent diabetes mellitus - NIP71 71 kDa N-myristoyltransferase inhibitor protein - NAF45 45 kDa N-myristoyltransferase activating factor  相似文献   

2.
N-Myristoyl-CoA:protein N-myristoyltransferase (NMT) is the enzyme that catalyses the transfer of myristate from myristoyl-CoA to the N-terminal glycine of protein substrates. NMT was highly purified from bovine brain by procedures involving sequential column chromatography on DEAE-Sepharose CL-6B, phosphocellulose, hydroxylapatite, and mono S and mono Q f.p.l.c.. The highly purified NMT (termed NMT·II) possessed high specific activity with peptide substrates derived from the N-terminal sequences of the cAMP-dependent protein kinase and pp60src (29,800 and 47,600 pmol N-myristoylpeptide formed/min/mg, respectively), intermediate activity with a peptide based on the N-terminal sequence of a viral structural protein (l) (M2; 17,300 pmol N-myristoylpeptide formed/min/mg) and very low activity with a peptide derived from the N-terminal sequence ofmyristoylatedalanine-richC-kinasesubstrate (MARCKS; 1500 pmol myristoylpeptide formed/min/mg). An NMT protein inhibitor (NIP71) isolated from the particulate fraction of bovine brain (King MJ and Sharma RK: Biochem J 291635-639, 1993) potently inhibited highly purified NMT activity (IC50 23.7 nM). A minor NMT activity (NMT·PU; 30% total NMT activity), which failed to bind to phosphocellulose, was insensitive to NIP71 inhibition. Inhibition of NMT was observed to be via mixed inhibition with respect to both the myristoyl-CoA and peptide substrates with NIP71 having an apparent higher affinity for NMT than the NMT·myristoyl·CoA complex. Inhibition by NIP71 at subsaturating concentrations of myristolyl-CoA and peptide resulted in a sigmoidal pattern of inhibition indicating that bovine brain possesses a potent and delicate on/off switch to control NMT activity.Abbreviations NMT N-myristoyl-CoA:protein N-myristoyltransferase - NMT·I mono Q N-myristoyl-CoA:protein N-myristoyltransferase peak I - NMT·II mono Q N-myristoyl-CoA:protein N-myristoyltransferase peak II - NMT·III mono Q N-myristoyl-CoA:protein N-myristoyltransferase peak III - NIP71 71 kDa heat-stable N-myristoyltransferase inhibitor protein  相似文献   

3.
Myristoyl CoA:protein N-myristoyltransferase catalyzes the addition of myristate to the amino-terminal glycine residue of a number of eukaryotic proteins.Escherichia coli transformed with human NMT expression construct produced high levels of N-myristoyltransferase. Using the combination of ammonium sulfate precipitation, chromatography on SP-Sepharose fast flow and fast protein liquid chromatography on Mono-S, the enzyme was purified more than 100 fold with 40% yield. The hNMT fusion protein exhibited an apparent molecular weight of 53 kDa on SDS-polyacrylamide gel electrophoresis. Upon cleavage by the Enterokinase [(Asp)4-Lys], the hNMT exhibited an apparent molecular mass of 49 kDa without loss of catalytic activity. The hNMT activity could be greatly activated severalfold with the use of Tris, SDS, ethanol and acetonitrile. The catalytic activity of hNMT was potently inhibited in a concentration dependent manner by NIP711 a bovine brain NMT inhibitory protein with a half maximal inhibition of 31.0 nM. TheE. coli expressed hNMT was homogeneous and showed enzyme activity.Abbreviations NMT N-myristoyl CoA:protein N-myristoyltransferase - NIP71 71 kDa heat stable membrane bound N-myristoyltransferase inhibitor protein - hNMT human NMT - DTNB N-5,5dithiobis (2-nitrobenzoic acid) - FPLC fast protein liquid chromatography - IPTG isopropyl -D-thiogalactopyranoside - cDNA complementarydeoxyribonucleic acid - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride  相似文献   

4.
N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. Little is known about the control and regulation of NMT in higher eukaryotes. Bovine spleen N-myristoyltransferase has been purified and characterized [Raju, RVS, Kalra J & Sharma RK (1994) J Biol Chem 269:12080–12083]. The activation of bovine spleen NMT with thiol reducing compounds, and its inhibition by the oxidizing agent sodium iodate, suggest a role for oxidation/reduction in NMT regulation. Available knowledge concerning coenzyme A (CoA), the thiol in the cell, indicated that the agents tested on NMT could also reduce or oxidize CoA. The studies suggested that reduced CoA is the key regulator of NMT activity, while oxidized CoA did not allow NMT to promote myristoylation. Further, the process of myristoylation and demyristoylation may be governed by NMT, depending on the differential concentration of CoA. The process of demyristoylation could be blocked by excess CoA. We therefore hypothesize that the initial event in the regulation of NMT is an increase in cellular CoA concentration which could be coupled to an increase in protein myristoylation. Once the CoA concentration in the cell decreases due to oxidation, the demyristoylation process would be operative.Abbreviations NMT N-myristoyl CoA:protein N-myristoyltransferase - hNMT human NMT - YNMT yeast NMT - DTNB N-55 dithiobis(2-nitrobenzoic acid) - DTT dithiothretol - 2-ME 2-mercaptoethanol  相似文献   

5.
A new series of acid-stable antifungal agents having strong inhibitory activity against Candida albicans N-myristoyltransferase (CaNmt) has been developed starting from acid-unstable benzofuranylmethyl aryl ether 2. The inhibitor design is based on X-ray crystallographic analysis of a CaNmt complex with aryl ether 3. Among the new inhibitors, pyridine derivative 8b and benzimidazole derivative 8k showed clear antifungal activity in a murine systemic candidiasis model.  相似文献   

6.
Myristoylation refers to the co-translational addition of a myristoyl group to an amino-terminal glycine residue of a protein by an ubiquitously distributed enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97). This review describes the basic enzymology, molecular cloning and regulation of NMT activity in various pathophysiological processes such as colon cancer and diabetes.  相似文献   

7.
Earlier, we have reported that N-myristoyltransferase (NMT) activity is higher in colonic epithelial neoplasms than in normal appearing colonic tissue and that increase in NMT activity appears at an early stage in colonic carcinogenesis [Magnuson, B., Raju, R. V. S., Moyana, T. N., and Sharma, R. K. (1995) J. Natl. Cancer Inst. 87, 1630-1635]. In this study, we demonstrate increased NMT mRNA in well-differentiated adenocarcinomas. NMT and c-Src mRNA levels were generally elevated in a subset of human colon cancer cell lines. Western blotting analysis employing N-myristoyltransferase inhibitory protein (NIP(71)) antibody demonstrated low levels of NIP(71) in high-expressing c-Src cell lines and high levels of NIP(71) in low-expressing c-Src cell lines. Interestingly, down regulation of c-Src by antisense expression in the HT-29 cell line resulted in increased expression of NIP(71), suggesting c-Src may negatively regulate NIP(71) expression. Furthermore, this is the first study demonstrating the expression of NIP(71) in human colon cancer cell lines and a possible relationship to colon carcinogenesis.  相似文献   

8.
Potent and selective Candida albicans N-myristoyltransferase (CaNmt) inhibitors have been identified through optimization of a lead compound 1 discovered by random screening. The inhibitor design is based on the crystal structure of the CaNmt complex with compound (S)-3 and structure-activity relationships (SARs) have been clarified. Modification of the C-4 side chain of 1 has led to the discovery of a potent and selective CaNmt inhibitor 11 (RO-09-4609), which exhibits antifungal activity against C. albicans in vitro.  相似文献   

9.
Modification of the C-2 position of a benzofuran derivative 6 (RO-09-4609), an N-myristoyltransferase (Nmt) inhibitor, has led us to discover antifungal agents that are active in a murine systemic candidiasis model. The drug design is based on the analysis of a crystal structure of a Candida Nmt complex with 2. The optimization has been guided by various biological evaluations including a quasi in vivo assay and pharmacokinetic analysis.  相似文献   

10.
Matrix proteins play multiple roles both in early and late stages of the viral replication cycle. Their N-terminal myristoylation is important for interaction with the host cell membrane during virus budding. We used Escherichia coli, carrying N-myristoyltransferase gene, for the expression of the myristoylated His-tagged matrix protein of Mason-Pfizer monkey virus. An efficient, single-step purification procedure eliminating all contaminating proteins including, importantly, the non-myristoylated matrix protein was designed. The comparison of NMR spectra of matrix protein with its myristoylated form revealed substantial structural changes induced by this fatty acid modification.  相似文献   

11.
A 16-residue synthetic peptide corresponding to the N-terminal sequence of p60src was used as the acyl acceptor in an assay for myristoyl-CoA:glycylpeptide N-myristoyltransferase in rat tissues. An additional C-terminal tyrosine amide was added to this peptide to facilitate radioiodination and enhance detectability. Reverse-phase h.p.l.c. enabled the simultaneous detection and quantification of the peptide substrate and its N-myristoylated product. N-Myristoyltransferase activity was highest in the brain with decreasing activities in lung, small intestine, kidney, heart, skeletal muscle and liver. Brain activity was distributed approximately equally between the 100,000 g pellet and supernatant fractions. The soluble enzyme exhibited a Kappm of 20 microM for the src peptide and an optimum between pH 7.0 and 7.5. Maximum N-acylating activity was seen with myristoyl (C14:0)-CoA with lower activities found with the C10:0-CoA and C12:0-CoA homologues. No activity was obtained with palmitoyl (C18:0)-CoA but this derivative inhibited N-myristoyltransferase activity greater than 50% at equimolar concentrations with myristoyl-CoA. With a decapeptide corresponding to the N-terminal sequence of the cyclic AMP-dependent protein kinase catalytic subunit as the acyl acceptor, the brain enzyme displayed a Kapp.m of 117 microM and was about 14-fold less catalytically effective than with the p60src acyl acceptor. Transferase activity was also seen with a 16-residue peptide corresponding to the N-terminal sequence of the HIV p17gag structural protein. Inhibition studies with shorter src peptide analogues indicated an enzyme specificity for the p60src acyl acceptor beyond 9 residues.  相似文献   

12.
The C-4 side chain modification of lead compound 1 has resulted in the identification of a potent and selective Candida albicans N-myristoyltransferase (CaNmt) inhibitor RO-09-4609, which exhibits antifungal activity against C. albicans in vitro. Further modification of its C-2 substituent has led to the discovery of RO-09-4879, which exhibits antifungal activity in vivo. The drug design is based on X-ray crystal analysis of a CaNmt complex with benzofuran derivative 4a. The optimization incorporates various biological investigations including a quasi in vivo assay and pharmacokinetic study. The computer aided drug design, synthesis, structure-activity relationships, and biological properties of RO-09-4879 are described in detail.  相似文献   

13.
The in vitro antifungal potency of six series of 4-arylthiosemicarbazides was evaluated. Two isoquinoline derivatives with an ortho-methoxy or ortho-methyl group at the phenyl ring were the most potent antifungal agents. Molecular modeling studies and docking of all 4-arylthiosemicarbazides into the active sites of sterol 14α-demethylase (CYP51), topoisomerase II (topo II), L: -glutamine: D: -fructose-6-phosphate amidotransferase (GlcN-6-P), secreted aspartic proteinase (SAP), N-myristoyltransferase (NMT), and UDP-N-acetylmuramoyl-L: -alanine:D: -glutamate ligase (MurD) indicated the importance of both structural and electronic factors in ligand recognition and thus for the antifungal effectiveness of 4-arylthiosemicarbazides. A possible antifungal target was identified (NMT) and isoquinoline-thiosemicarbazides showed more favorable affinity than the native ligand.  相似文献   

14.
Very low-level expression of hepatitis B virus (HBV) preS1 with the native-type N-terminus hampered the biochemical and functional studies on its myristoylation. In the present study, the fusion HBV preS1 with the native-type N-terminus and a His6-Tag fused to C-terminus (HBV preS1-HT) was highly expressed in Escherichia coli. This was due to an introduced mutation of the rare codon GGA found in the HBV preS1 to the codon preferred by E. coli, GGU. The protein was rapidly purified from bacterial lysate by Ni-IDA affinity chromatography. The experimental assays using 3H-labeled substrate demonstrate that the purified HBV preS1-HT can be effectively N-myristoylated by recombinant human protein N-myristoyltransferase (NMT) in vitro.  相似文献   

15.
N-myristoylation is the irreversible attachment of a C(14) fatty acid, myristic acid, to the N-terminal glycine of a protein via formation of an amide bond. This modification is catalyzed by myristoyl-coenzyme A (CoA):protein N-myristoyltransferase (NMT), an enzyme ubiquitous in eukaryotes that is up-regulated in several cancers. Here we report a sensitive fluorescence-based assay to study the enzymatic activity of human NMT1 and NMT2 based on detection of CoA by 7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin. We also describe expression and characterization of NMT1 and NMT2 and assay validation with small molecule inhibitors. This assay should be broadly applicable to NMTs from a range of organisms.  相似文献   

16.
Several proteins of viral and cellular origins are myristoylated on an amino-terminal glycine residue during biosynthesis. The enzyme responsible for this modification, myristoyl CoA:protein N-myristoyltransferase (NMT), can be measured in cell-free systems by following the transfer of [3H]myristate from [3H]myristoyl CoA to a synthetic peptide substrate. We report here a procedure for the analysis of NMT activity using ion-exchange chromatography on CM-Sepharose to separate [3H]myristoyl peptide from radiolabeled reactants. This technique provides a convenient method for assaying multiple samples that is much more rapid and sensitive than procedures that rely on reversed-phase HPLC for the separation of reaction components. Characterization of this assay indicates that it is suitable for the kinetic analysis of NMT activity and for the rapid analysis of column fractions generated during the purification of NMT.  相似文献   

17.
人Src蛋白N端区段的表达、纯化和体外豆蔻酰化底物活性   总被引:1,自引:0,他引:1  
利用RT PCR技术 ,从来源于人结肠癌Caco 2细胞总RNA中 ,扩增得到编码人Src蛋白N端 147氨基酸的DNA序列片段。进而构建T7启动子控制下的C端His tag融合的表达质粒pMF SrcHT ,并转化大肠杆菌BL2 1(DE3)。通过SDS PAGE等分析结果显示 ,在 37°C培养条件下经IPTG诱导 ,C端His tag融合的人Src蛋白N端区段 (命名为SrcHT ,2 1kD)得到高效表达 ,并且主要以可溶性形式存在。进一步利用Ni IDA亲和层析分离 ,从表达菌裂解上清液中一步纯化获得重组蛋白SrcHT ,SDS PAGE分析纯度达 95 %以上。在此基础上 ,以 [3H]豆蔻酰 CoA为同位素标记底物进行SrcHT的体外NMT豆蔻酰化反应测定。SDS PAGE分离和放射自显影分析结果表明 ,SrcHT蛋白可被NMT有效豆蔻酰化而具有NMT的底物活性。这些为深入详细研究Src蛋白豆蔻酰化作用和构建以Src蛋白豆蔻酰化为靶标的分子筛药体系等打下了重要基础。  相似文献   

18.
A number of viral and eukaryotic proteins which undergo a lipophilic modification by the enzyme N-myristoyltransferase (NMT: NMT1 and NMT2) are required for signal transduction and regulatory functions. To investigate whether NMT2 contributes to the pathogenesis of colorectal carcinoma, we observed a higher expression of NMT2 in most of the cases of cancerous tissues compared to normal tissues (84.6% of cases; P < 0.05) by Western blot analysis. Furthermore, protein-protein interaction of NMTs revealed that m-calpain interacts with NMT1 while caspase-3 interacts with NMT2. Our findings provide the first evidence of higher expression of NMT2 in human colorectal adenocarcinomas and the interaction of both forms of NMT with various signaling molecules.  相似文献   

19.
A greatly simplified assay for myristoyl-CoA:glycylpeptide N-myristoyltransferase (NMT) activity is described. The assay is based on the differential solubility of the acyl-peptides produced as a consequence of the NMT activity and yields results comparable with those obtained with the original assay described by Towler & Glaser [(1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2812-2816], which requires h.p.l.c. to determine the production of the acyl-peptides. The use of the revised assay in the preliminary steps of the purification of rat brain NMT is described, and its use in determining the fatty acid-specificity of the enzyme is illustrated. The results are shown to be comparable with those obtained with the h.p.l.c.-based assay.  相似文献   

20.
Bereta G  Palczewski K 《Biochemistry》2011,50(18):3764-3776
Protein N-myristoylation occurs by a covalent attachment of a C14:0 fatty acid to the N-terminal Gly residue. This reaction is catalyzed by a N-myristoyltransferase that uses myristoyl-coenzyme A as substrate. But proteins in the retina also undergo heterogeneous N-acylation with C14:2, C14:1, and C12:0 fatty acids. The basis and the role of this retina-specific phenomenon are poorly understood. We studied guanylate cyclase-activating protein 1 (GCAP1) as an example of retina-specific heterogeneously N-acylated protein. The types and the abundance of fatty acids bound to bovine retinal GCAP1 were C14:2, 37.0%; C14:0, 32.4%; C14:1, 22.3%; and C12:0, 8.3% as quantified by liquid chromatography coupled mass spectrometry. We also devised a method for N-acylating proteins in vitro and used it to modify GCAP1 with acyl moieties of different lengths. Analysis of these GCAPs both confirmed that N-terminal acylation of GCAP1 is critical for its high activity and proper Ca(2+)-dependent response and revealed comparable functionality for GCAP1 with acyl moieties of various lengths. We also tested the hypothesis that retinal heterogeneous N-acylation results from retinal enrichment of unusual N-myristoyltransferase substrates. Thus, acyl-coenzyme A esters were purified from both bovine retina and brain and analyzed by liquid chromatography coupled mass spectrometry. Substantial differences in acyl-coenzyme A profiles between the retina and brain were detected. Importantly, the ratios of uncommon N-acylation substrates--C14:2- and C14:1-coenyzme A to C14:0-coenzyme A--were higher in the retina than in the brain. Thus, our results suggest that heterogeneous N-acylation, responsible for expansion of retinal proteome, reflects the unique character of retinal lipid metabolism. Additionally, we propose a new hypothesis explaining the physiological relevance of elevated retinal ratios of C14:2- and C14:1-coenzyme A to C14:0-coenzyme A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号