首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recruitment limitation may limit the ability of sites to regenerate after disturbances such as weed invasion and weed management. We investigated seed bank constraints and dispersal limitation in coastal dune communities on the east coast of Australia. The ability of sites to regenerate naturally following weed removal was assessed in coastal dune communities invaded by the invasive alien, bitou bush (Chrysanthemoides monilifera subsp. rotundata). To investigate recruitment limitation, seed banks and vegetation of invaded, native, intensively managed (selective application of herbicide and some re-vegetation) and extensively managed (large-scale, non-selective herbicide application) sites were compared. We investigated the dispersal mechanisms of species in the seed bank and vegetation to determine if communities might be dispersal-limited, i.e. contain significant numbers of species with only short-distance dispersal capabilities. Species richness and composition of soil seed banks differed from the vegetation in foredunes and hinddunes. Invasion depleted seed banks further. About half of the species had short-distance dispersal mechanisms indicating the potential for dispersal limitation. Secondary weed invasion following management was evident although alien species occurred in both seed banks and vegetation. Our results indicated that coastal dune communities suffer recruitment limitation. Native, managed and invaded dune communities appear to be both seed bank and dispersal-limited although management and invasion exacerbates recruitment. Regeneration of coastal dune communities will require active reintroduction of species, particularly those with short-distance dispersal mechanisms.  相似文献   

2.
Abstract. The effects of different forms of land use on germination and establishment of the rare fen species Succisella inflexa were investigated in seed introduction experiments in a mown and an abandoned fen meadow in SE Germany. Treatments included abandonment, mowing in fall and mowing with creation of gaps in the moss and litter layer. Floating capacity of seeds was tested in order to estimate potential dispersal by water. On the mown meadow, gaps had a slightly positive effect on germination rates, while greatly increasing seedling survival until the next spring. At the abandoned site, litter inhibited germination, whereas mosses had a negative effect on germination and a positive effect on survival rates during the first year after germination. Both germination and seedling establishment were negatively affected by the presence of slug herbivores. On the abandoned site, no seedlings at all survived until the next spring. Even though seeds of Succisella inflexa were capable to float for several weeks and to germinate thereafter, the situation at the field sites indicates that longdistance dispersal is highly unlikely. Our results showed that not only direct effects of abandonment, such as accumulation of litter, may have led to poor germination and poor seedling establishment of the species. Additionally, indirect consequences of changes in land use, such as higher seedling herbivory by slugs and successional vegetation changes due to abandonment, were important in determining habitat quality and availability of microsites for seedling recruitment. Furthermore, early mowing imposed seed limitation on plant populations.  相似文献   

3.
Invasion by exotic plants often is restricted by processes, such as seed predation, acting on early life-history stages; however, the relative importance of these processes might vary among habitats. Modern human land use has created a mosaic of habitats in many landscapes, including the landscape of the northeastern United States. European buckthorn (Rhamnus cathartica) is an exotic plant that has achieved varying success in North American habitats. We studied dispersal, seed survival, germination, and seedling survival of buckthorn populations at four plots in each of sugar maple (Acer saccharum) forests, old fields, and abandoned conifer plantations in central New York State. Dispersal was low in maple forests, as evidenced by low collection rates of R. cathartica seeds in seed traps. Rates of post-dispersal seed predation were highest in maple forests and lowest in old fields, suggesting greater use of maple forests by granivorous rodents. Germination rates did not vary among seeds planted in soils of these habitats when studied in the laboratory despite differences in soil pH. Survival of transplanted seedlings was low in maple forests relative to old fields and plantations. Buckthorn invasion of old fields and abandoned plantations was not strongly constrained by factors we considered, and the buckthorn populations in these habitats were large. A combination of low dispersal by frugivores, low seed survival due to predation, and low seedling survival due to dim light conditions apparently prevents R. cathartica from invasion of intact maple forests of our area. Native fauna and canopy closure may act synergistically to reduce success of invasive plants in natural habitats.  相似文献   

4.
Although seed dispersal is considered to be a key process determining the spatial structure and spread of non-native plant populations, few studies have explicitly addressed the link between dispersal vector behaviour, seed distribution and seedling recruitment to gain insight into the process of exotic species invasion within a fragmented landscape context. The present study analyses the relationship between avian frugivory and spatial patterns of seed deposition and seedling recruitment for an expanding population of the invasive Prunus serotina in a hedgerow network landscape in Flanders, Belgium. We quantified fruit production, observed frugivores, and determined the spatial distribution of bird droppings and P. serotina seedlings. A relatively diverse assemblage of frugivores visited P. serotina seed trees, with Columba palumbus and Turdus merula being by far the most important dispersers. Landscape structure strongly affected dispersal vector behaviour and the spatial distribution of perching birds, droppings and seedlings. Frugivorous birds non-randomly dispersed seeds to perching sites and an association between perching birds, seed deposition and seedling recruitment was found. Results indicate that landscape structure contributes to non-random seed deposition of P. serotina by common local frugivores. Cutting the larger seed trees is proposed as the most feasible measure to slow down the invasion rate.  相似文献   

5.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

6.
Jatropha curcas L. produces seeds rich in non‐edible oil suitable for biodiesel but it has been categorized as invasive. Although not scientifically verified, this allegation has resulted in a cultivation ban in several countries. In this article we report an integrated series of observations and experimental findings from invasiveness research in Zambia. We studied the impacts of J. curcas plantations on adjacent land use systems focusing on spontaneous occurrence of seedlings, seed dispersal mechanisms, seed predation by animals, and germination success of dispersed seeds. No spontaneous regeneration was observed in land use systems adjacent to J. curcas plantations. Primary seed dispersal was limited, predominantly under the canopy of the mother plant. Rodents and shrews dispersed and predated J. curcas seeds and fruits. They transported the seeds up to 23 m from the sources and repositioned them in their burrows up to 0.7 m deep, but none of these seeds could establish. Germination experiments in adjacent land use systems revealed 4% germination success at the soil surface, and 65% if buried artificially at 1–2 cm depth, yet the latter is unlikely to occur under natural conditions. These findings show that J. curcas seeds may be dispersed by animals to adjacent land use systems, but no natural recruitment was observed given low germination on the surface and none in burrows. Altogether these results suggest that the plant currently does not show an elevated risk of invasion to adjacent land use systems, at least in the investigated case study. But more long‐term studies, also in other growing areas are needed to corroborate these results.  相似文献   

7.
基于个体的空间显性模型和遥感技术,以互花米草为例,模拟了自1997到2010年的种群扩张动态,揭示了土地利用变化与潮间带高程的影响;并通过全局敏感性分析揭示了种子扩散、成体存活率、有性和无性繁殖等种群统计学特征对互花米草种群扩张的相对重要性。研究结果发现:1)有性繁殖与无性繁殖共同决定互花米草种群快速扩张;2)潮间带高程和土地利用变化显著影响模型预测的精度,对互花米草种群扩张有非常重要的影响;3)成体存活率与种子长距离扩散是影响互花米草种群扩张速度最重要的因素;无性繁殖比有性繁殖对种群扩张的影响更大;种子长距离扩散比本地扩散更为重要,同时,小概率的种子长距离扩散事件对种群扩张有非常重要的影响。为了经济有效地控制外来入侵植物的扩张,应该抑制种子的长距离扩散和移除种子长距离扩散形成的位于入侵前沿的小斑块。  相似文献   

8.
Naturalized plant species disperse their populations over considerable distances to become invasive. We tested the hypothesis that this shift from naturalization to invasion is facilitated by increased investment of resources in seed dispersal appendages, using an assemblage of naturalized plants of south-eastern Australia. Compared with non-invasive species, we found in both cross-species and independent-contrasts analyses that invasive species invested more heavily in seed dispersal appendages, regardless of the structure present on the seed associated with the mode of dispersal (e.g., wings versus fleshy fruits). Invasive species such as Lonicera japonica, Hedera Helix and Acetosa sagittata were found to invest as much as 60–70% of total diaspore mass in dispersal appendages. The positive relationship between dispersal investment and invasion success was still prevalent after controlling for the effects of plant growth form, seed mass and capacity for vegetative growth. Our findings demonstrate that a plant’s investment in dispersal appendages helps to overcome the dispersal barrier in the shift from naturalization to invasion.  相似文献   

9.

Background and Aims

Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field.

Methods

A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory.

Key Results

Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy.

Conclusions

The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant.  相似文献   

10.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

11.
Understanding differences in the components of life‐cycle stages of species between their native and introduced ranges can provide insights into the process of species transitioning from introduction to naturalization and invasion. We examined reproductive variables of the germination (seed predation, seed viability, time to germination), seed output (crown projection, seed production, seed weight) and dispersal (seed weight, dispersal investment) stages of five woody Fabaceae species, comparing native and introduced ranges. We predicted that each species would differ in reproductive variables of at least one life‐cycle stage between their native and introduced ranges, thus allowing us to determine the life‐cycle stage most associated with invasion success in the introduced range. Acacia melanoxylon and Paraserianthes lophantha had reduced seed predation in their introduced ranges while P. lophantha also had higher seed viability indicating that the germination life‐cycle stage is most strongly associated with their invasion success in the introduced range. Only Acacia longifolia varied between ranges for the seed output stage due to larger plant size, greater seed production and smaller seed size in its introduced range. Similar to A. longifolia, Acacia cyclops had smaller seed size in its introduced range but did not have any other variable differences between ranges suggesting that the dispersal stage is best associated with its invasion success in the introduced range. Surprisingly, Acacia saligna was the only species without a clear life‐cycle stage difference between ranges despite it being one of the more invasive acacia species in Australia. Although we found clear differences in reproductive variables associated with life‐cycle stages between native and introduced ranges of these five species, these differences were largely species‐specific. This suggests that a species invasion strategy into a novel environment is complex and varies among species depending on the environmental context, phenotypic plasticity and genotypic variation in particular traits.  相似文献   

12.
This study investigates a spatially explicit, individual-based model for simulating the spread of invasive smooth cordgrass (Spartina alterniflora) in Yancheng coastal wetlands from 1995 to 2010. The model, which considers the landscape heterogeneity and changes detected by remote sensing, also reveals the relative importance of sexual and asexual reproduction in the spread by global sensitivity analysis. The model was verified as suitable for simulating the range expansion of S. alterniflora. The results show that: (1) although seedling recruitment is low, it significantly contributes to the range expansion of S. alterniflora. Removing sexual propagation greatly reduces the expansion rate. Rapid expansion requires both sexual and asexual reproduction; (2) in the global sensitivity analysis, the most significant affecters of S. alterniflora invasion were seed dispersal distance, adult survival rate and asexual recruitment survival rate. Sexual propagation contributes much more significantly to quick range expansion than asexual reproduction, but asexual reproduction is the main source of recruitment. Invasion control strategies should target a single reproduction mode. Here, limiting the germination and dispersal of seeds is suggested as a realistic strategy for controlling and managing invasion by this species.  相似文献   

13.
Fruit-eating animals play important roles as seed dispersal agents in terrestrial systems. Yet, the extent to which seed dispersal by nocturnal omnivores may facilitate germination and the recruitment of plant communities has rarely been investigated. Characterizing their roles in seed dispersal is necessary to provide a more complete picture of how seed dispersal processes affect ecosystem functioning. We investigated the roles and impacts of two species of nocturnal omnivorous lemur species, Microcebus jollyae and M. rufus, on seed dispersal in Madagascar's rain forests, through analysis of fecal samples and germination experiments. Data show that these lemur species, which are among the world's smallest primates, dispersed 22 plant species from various forest strata and that the defecated seeds germinated faster and at higher rates than control seeds for the eight plant species we tested. Even though mouse lemurs dispersed both native and non-native plant species, non-native plant species represented a relatively small proportion (17%). These results demonstrate that overlooked nocturnal omnivores can act as important seed dispersers, which may have critical implications for forest regeneration and the maintenance of plant diversity in fragmented/degraded forests. Finally, we provide critical insights into the previously unobserved behavior and diet of endangered nocturnal lemurs for their effective conservation.  相似文献   

14.
Seedling recruitment is a multi-phased process involving seed production, dispersal, germination, seedling establishment and subsequent survival. Understanding the factors that determine success at each stage of this process is of particular interest to scientists and managers seeking to understand how invasive species spread and persist, and identify critical stages for management. To understand the factors and processes influencing recruitment of the invasive species Berberis darwinii Hook. (Darwin’s barberry), temporal and spatial patterns of seed dispersal, germination and seedling establishment were examined. Seed dispersal from a large source population was measured over two fruiting seasons, and subsequent patterns of seedling emergence and survival within each cohort were measured. Seed longevity was tested under both natural and artificial conditions. Seeds were widely dispersed by birds, up to 450 m from the source population. Dispersal was essential to seedling establishment, as few seedlings survived beneath the parent canopy. Seeds were relatively short-lived in the soil under both field and glasshouse conditions, with few surviving for more than 1 year. Patterns of newly emerged seedlings largely reflected patterns of seed rain, but seedling survival was significantly affected by distance from source population, seedling density and light environment. These results suggest that recruitment of B. darwinii is dependent on dispersal of seeds to favourable microsites. Management priorities should include the removal of fruiting plants, and seedling control in highlight areas.  相似文献   

15.
Seed dispersal by vertebrate animals is important for the establishment of many fleshy-fruited plant species. Different frugivorous species can provide different seed dispersal services according to their specific dietary preferences as well as behaviour and body traits (e.g. body size and beak size of birds). Our aim was to study redundancies and complementarities in seed dispersal and germination between the two main native seed disperser birds and the introduced silver pheasant Lophura nycthemera in the temperate Patagonian forests. For this, we collected fresh droppings from the studied species and analyzed seed content. We conducted germination trials for four plant species common in bird droppings; two native species (Aristotelia chilensis and Rhaphithamnus spinosus) and two invasive non-native species (Rubus ulmifolius and Rosa rubiginosa). Both native frugivorous birds and the silver pheasant dispersed fruits of non- native fleshy-fruited plants, but their roles were non-redundant in terms of species dispersed and effect on seed germination. The silver pheasant dispersed a proportionally high number of non-native seeds, while native birds dispersed a high number of native seeds. In addition, the effect of gut treatment in seed germination differed between seed dispersers. Native birds promoted the germination for the two native plant species studied, while the silver pheasant promoted the germination of one non-native plant. This suggests that seed dispersal by the silver pheasant may contribute to the spread of some invasive fleshy-fruited plants in the ecosystems that otherwise would not be dispersed by any other bird. The understanding of redundancies and complementarities on seed dispersal and germination between native and introduced birds will allow improving the management of fleshy-fruited non-native plants.  相似文献   

16.
Seedling recruitment limitations create a demographic bottleneck that largely determines the viability and structure of plant populations and communities, and pose a core restriction on the colonization of novel habitat. We use a shade‐tolerant, invasive grass, Microstegium vimineum, to examine the interplay between seed and establishment limitations – phenomena that together determine recruitment success but usually are investigated individually. We add increasing amounts of seed to microhabitats containing variable levels of leaf litter thickness – with reduced leaf litter simulating disturbance – to investigate whether reduced seed limitation overcomes the establishment limitation posed by litter cover. We do this across gradients in understory light, moisture and temperature, and quantify germination, survival, and then per capita adult biomass and reproduction in order to understand the implications for invasion across the landscape. We find that the combined effects of seed and establishment limitation influence recruitment; however, propagule pressure overwhelms the inhibitory effects of leaf litter thickness. Leaf litter reduces germination by 22–57% and seedling survival by 13–15% from that observed on bare soil. However, density‐dependent reproduction compensates as 1–3 plants can produce far more seeds (approx. 525) than are required for persistence. As such, just a few plants may establish in understory forest habitat and subsequently overwhelm establishment barriers with copious propagule production. These results, for a widespread, invasive plant, are consistent with the emerging perspective for native plants that seed and establishment limitation jointly influence recruitment. The ability for an exotic plant species to compensate for low population densities with high per capita seed production, that then overrides establishment limitations, makes its invasive potential daunting. Further work is required to test if this is a common mechanism underlying plant invasions.  相似文献   

17.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

18.
Long-distance dispersal is a key process in biological invasions. Previous research has emphasized the role of nonstandard dispersal vectors, but consequences of a change in dispersal vector for the establishment of invasive plant species have received less attention. We analyzed how water-mediated dispersal rather than the more expected wind-mediated dispersal can affect the establishment of the invasive tree Ailanthus altissima in riparian corridors by changing the germination rate and velocity and by providing the option of a new pathway of vegetative propagation. We analyzed the potential of different types of propagules (fruits that have floated or been submerged, current- and second-year stem fragments) to establish new individuals after contact with water for 0, 3, 10, and 20 days. Length and type of seed contact with water led to divergent germination responses. Seeds that had floated for 3 days had an increased level of seed germination (87%), while a 20-day stay in water water-curbed germination to 32% compared to 53% in control. After floatation, the maximum number of emerged seedlings was achieved more than 3 weeks earlier than in all other treatments. In general, the germination was enhanced in floating compared to submerged fruits. Experiments with stem fragments revealed the option of a novel pathway for long-distance dispersal in river corridors: Except for stem fragments that floated for 20 days, 33–75% of buried stem fragments produced adventitious shoots, 10% also set roots. The results suggest that both generative and vegetative propagules of A. altissima can be dispersed at regional scales in river corridors. Hence, water as an additional dispersal vector is expected to enhance invasions by species with wind-dispersed seeds. Our findings suggest the importance of control of initial colonizations in riparian habitats and emphasize the need to include consequences of secondary dispersal when modeling the spread of invasive species.  相似文献   

19.
Intra and interspecific variation in frugivore behaviour can have important consequences for seed dispersal outcomes. However, most information comes from among‐species comparisons, and within‐species variation is relatively poorly understood. We examined how large intraspecific differences in the behaviour of a native disperser, blackbuck antelope Antilope cervicapra, influence dispersal of a woody invasive, Prosopis juliflora, in a grassland ecosystem. Blackbuck disperse P. juliflora seeds through their dung. In lekking blackbuck populations, males defend clustered or dispersed mating territories. Territorial male movement is restricted, and within their territories males defecate on dung‐piles. In contrast, mixed‐sex herds range over large areas and do not create dung‐piles. We expected territorial males to shape seed dispersal patterns, and seed deposition and seedling recruitment to be spatially localized. Territorial males had a disproportionately large influence on seed dispersal. Adult males removed twice as much fruit as females, and seed arrival was disproportionately high on territories. Also, because lek‐territories are clustered, seed arrival was spatially highly concentrated. Seedling recruitment was also substantially higher on territories compared with random sites, indicating that the local concentration of seeds created by territorial males continued into high local recruitment of seedlings. Territorial male behaviour may, thus, result in a distinct spatial pattern of invasion of grasslands by the woody P. juliflora. An ex situ experiment showed no beneficial effect of dung and a negative effect of light on seed germination. We conclude that large intraspecific behavioural differences within frugivore populations can result in significant variation in their effectiveness as seed dispersers. Mating strategies in a disperser could shape seed dispersal, seedling recruitment and potentially plant distribution patterns. These mating strategies may aid in the spread of invasives, such as P. juliflora, which could, in turn, negatively influence the behaviour and ecology of native dispersers.  相似文献   

20.
Many highly invasive plant species have fleshy fruits which are eaten by native frugivorous animals. These frugivores play an important role in long-distance seed dispersal, and may also affect germination success. The aim of this study was to determine whether generalist frugivores enhance or decrease seed germination of invasive alien species through pulp removal or seed coat abrasion, besides serving as dispersal agents. Fruits of four fleshy-fruited invasive alien plant species, namely Solanum mauritianum, Cinnamomum camphora, Lantana camara and Psidium guajava, were fed to three generalist avian frugivorous species, which have been observed feeding on these fruits in the wild. Seed retention time was recorded as this affects dispersal distance and the duration that seeds are exposed to the effects of the gut. Seeds removed from excreta, seeds from manually de-pulped fruit, and whole fruit were planted in soil trays housed in a greenhouse. Daily germination counts were done. Seed retention times differed significantly between bird species for all fruits, except those of C. camphora. However, all frugivores had a similar effect on the germination success of seeds of S. mauritianum, L. camara and P. guajava, showing that gut retention time was not important. Germination of seeds from manually de-pulped fruits did not differ from that of ingested seeds of all plant species, suggesting that seed coat abrasion was also not important. Pulp removal resulted in significantly higher germination rates, both in the two species with larger, multi-seeded fruit (S. mauritianum and P. guajava), and in the two species having single-seeded fruit with waxy exocarps (C. camphora and L. camara). Pulp removal also resulted in significantly earlier germination of L. camara and P. guajava seeds. Therefore, frugivores not only accelerate dispersal, but also greatly enhance seed germination of all fleshy-fruited invasive alien species in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号