首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaves from sugarcane were collected from Egyptian plantation fields and tested for phytoplasma (Sugarcane yellows phytoplasma, SCYP) and Sugarcane yellow leaf virus (SCYLV) using nested PCR (with different primers) and RT‐PCR, respectively. These results showed significant differences in the amplification of the PCR assays. The primer MLO‐X/MLO‐Y, which amplified the 16S‐23S rDNA spacer region, was the most precise to detect the phytoplasma in sugarcane plants. Sequencing and restriction fragment length polymorphism analysis revealed that all tested phytoplasmas belonged to the 16SrI (aster yellows phytoplasma) group, with the exception of cultivar G84‐47 belonged to the 16SrXI (Rice yellow dwarf phytoplasma) group. Three Egyptian sugarcane cultivars were phytoplasma free. Phylogenetic analyses of 34 screened accessions of 16S ribosomal DNA gene sequences of Candidatus phytoplasma including the ones collected from Egypt used in this study and those extracted from GenBank showed that they split into two distinct clusters. The phylogenetic analyses indicated that these phytoplasmas are closely related and share a common ancestor. All tested Egyptian sugarcane plants were infected by SCYLV with the exception of cultivar Phil‐8013 which was virus free.  相似文献   

2.
Water deficit is the major yield‐limiting factor of crop plants. The exposure of plants to this abiotic stress can result in oxidative damage due to the overproduction of reactive oxygen species. The aim of this work was to study the antioxidant‐stress response of drought‐tolerant (SP83‐2847 and SP83‐5073) and drought‐sensitive (SP90‐3414 and SP90‐1638) sugarcane varieties to water‐deficit stress, which was imposed by withholding irrigation for 3, 10 and 20 days. The drought‐sensitive varieties exhibited the lowest leaf relative water content and highest lipid peroxidation, hydrogen peroxide (H2O2) and proline contents during the progression of the drought‐stress condition. The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPOX) and glutathione reductase (GR) activities changed according to variety and stress intensity. SP83‐2847 exhibited higher CAT and APX activities than the other varieties in the early stage of drought, while the activities of GPOX and GR were the highest in the other varieties at the end of the drought‐stress period. A Cu/Zn SOD isoenzyme was absent at the end of drought period from the SP90‐3414‐sensitive variety. The results indicate that lipid peroxidation and early accumulation of proline may be good biochemical markers of drought sensitivity in sugarcane.  相似文献   

3.
Yellow leaf (YL) of sugarcane caused by Sugarcane yellow leaf virus (ScYLV, a Polerovirus of the Luteoviridae family) is a serious disease affecting the crop production and productivity in India. Although impact of the disease on cane growth is observed, no systematic study has been done so far from the tropical Asian region to establish its impact on various physiological parameters, cane yield and juice quality. We have assessed physiological parameters in symptomatic and asymptomatic plants of ten different cultivars and a genotype. In addition, similar comparisons were made between virus-infected and virus-free plants derived through meristem culture. Our studies established that among several physiological parameters, photosynthetic rate (A), stomatal conductance (g s) and SPAD metre values were significantly reduced in cultivars severely infected with ScYLV. Virus-infected cultivars exhibited significant reduction in growth/yield parameters, viz. stalk height, stalk thickness and number of internodes. Plant growth reductions were found to be 42.9, 42.3 and 38.9 % in susceptible cultivars CoPant 84211, Co 86032 and CoC 671, respectively. In addition to reduction in stalk weight, height and girth, YL disease also reduced juice yield in the affected canes up to 34.15 %. Similarly, comparison of diseased (virus-infected) and virus-free plants derived through meristem culture also revealed a drastic reduction in cane growth/physiological parameters and juice yield due to virus infection. The present study is the first comprehensive report demonstrating that YL disease caused by ScYLV seriously affects cane and juice yield in major sugarcane varieties under tropical climatic conditions (India). Consequently, this situation warrants a massive programme to provide healthy seed material and initiate breeding for YL resistance in sugarcane.  相似文献   

4.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cuItlvars (I.e. CIM-240 and S-12) was Investigated. The incidence of disease attack was found to be 100% In the S-12 cuItlvar and 16% in the CIM-240 cuItivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antlsera-treated cell sap. The CLCuV Impaired the accumulation of different nutrients in both cuItivars. A marked decrease in the accumulation of Ca^2+ and K^+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na^+, N, and P. It was observed that the curling of leaf margins in CLCuV-Infected plants was associated with the leaf Ca^2+ content; leaf curling was severe in plants with a significant reduction In Ca^2+ content. Moreover, leaf K&+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   

5.
A group of sunflower lines that exhibit a range of leaf Na + concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na + accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt‐treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na+ accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na+‐including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na+‐excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw‐puzzle shape, whereas in treated plants, they tended to retain closer‐to‐circular shapes and a lower number of lobes.  相似文献   

6.
Evidence is presented for the association of a phytoplasma, provisionally named sugarcane yellows phytoplasma (ScYP), in sugarcane affected by a yellow leaf syndrome. The phytoplasma was consistently detected in leaves of more than 40 varieties from eight African countries. It was present in all symptomatic as well as some asymptomatic field grown cane samples but not in plants grown from true seed, and it was also observed in phloem sieve tubes by transmission electron microscopy. Phytoplasma 16S rDNA was confirmed by PCR, and restriction fragment analysis using Rsal and Haelll confirmed that PCR-amplified products were of phytoplasma rather than of plant or of other pathogen origin. Sequences obtained from the intergenic spacer region, between the 16S and 23S rDNA genes, confirmed the identity of the phytoplasma as belonging to the western X group of phytoplasmas.  相似文献   

7.
8.
Leaf gas exchange, plant growth and leaf ion content were measured in wheat (Triticum durum L. cv. HD 4502) exposed to steady- state salinities (1.6, 12.0 and 16.0 dS nr−1) for 8 weeks. Salinity reduced leaf area and number of tillers, and increased Na+ and Cl concentrations in leaves. Leaf- to- leaf gradients of these ions were observed. The oldest leaf contained 6 to 8 times more Na+ and Cl than the flag leaf. Net photosynthetic rate (PN), transpiration rate (E) and stomatal conductance (gS) were the highest in flag leaf, declined in the middle and fully expanded leaves, and were minimum in the oldest leaves. These processes were reduced by salinity with similar leaf- to- leaf gradients. Intercellular CO2 concentrations in the older leaves were higher than in the flag leaf in non-saline plants, and increased similarly with salinity. Leaf age was the major factor in reducing PN, and senescence processes were promoted by salinity.  相似文献   

9.
Morpho‐physiological changes caused by particular plant growth‐promoting rhizobacteria were evaluated in sugarcane plants under varying water availability. Under well‐watered conditions, we have found one rhizobacteria isolate (IAC‐RBcr5) able to enhance root dry matter and photosynthesis of sugarcane plants. The IAC‐RBcr5 genome was sequenced and high similarity was found with Pseudomonas putida GB‐1. Based on increased root system size of inoculated plants, we hypothesised that sugarcane plants inoculated with IAC‐RBcr5 would have improved performance under water deficit. Although IAC‐RBcr5 had improved plant leaf CO2 assimilation under water shortage, inoculation caused reduction of biomass accumulation in sugarcane. The negative influence of water deficit on shoot growth rate and root traits such as volume, area, diameter, length and specific root area was higher in plants treated with IAC‐RBcr5 as compared to non‐inoculated ones. However, rhizobacteria‐induced improvements in leaf and root proline contents would represent a strategy for storing carbon and nitrogen during low water availability and helping both organisms to resume their metabolism after rehydration. In conclusion, we found and identified a rhizobacterium able to improve growth and photosynthesis of sugarcane plants. Such benefit for plant growth was lost under low water availability as a likely consequence of increased carbon‐energy demand by rhizobacteria and their sensitivity to drought.  相似文献   

10.
Relationship of leaf anatomy with photosynthetic acclimation of Valeriana jatamansi was studied under full irradiance [FI, 1 600 mol(PPFD) m–2 s–1] and net-shade [NS, 650 mol(PPFD) m–2 s–1]. FI plants had thicker leaves with higher respiration rate (R D), nitrogen content per unit leaf area, chlorophyll a/b ratio, high leaf mass per leaf area unit (LMA), and surface area of mesophyll cell (S mes) and chloroplasts (S c) facing intercellular space than NS plants. The difference between leaf thickness of FI and NS leaves was about 28 % but difference in photon-saturated rate of photosynthesis per unit leaf area (P Nmax) was 50 %. This indicates that P Nmax can increase to a larger extent than the leaf thickness with increasing irradiance in V. jatamansi. Anatomical studies showed that the mesophyll cells of FI plants had no open spaces along the mesophyll cell walls (higher S c), but in NS plants wide open spaces along the mesophyll cell wall (lower S c) were found. Positive correlation between S c and P Nmax explained the higher P Nmax in FI plants. Increase in mesophyll thickness increased the availability of space along the mesophyll cell wall for chloroplasts (increased S c) and hence P Nmax was higher in FI plants. Thus this Himalayan species can acclimate to full sunlight by altering leaf anatomy and therefore may be cultivated in open fields.  相似文献   

11.
The osmotic and ion-specific components of salt-induced inhibition of leaf expansion growth were investigated in beans grown from 12 h to several days in either NaCl-containing solution cultures, an isosmotic concentrated macronutrient solution, or a vermiculite–compost mixture with low Na+ but high Cl availability. Inhibition of leaf expansion and leaf ABA increase was more intense in the NaCl than in the isosmotic macronutrient treatment. Root Na+ was highly correlated to inhibition of leaf expansion and leaf or xylem sap ABA. When Na+ was sequestered in soil, salinized plants showed no reduction in leaf expansion or ABA increase, regardless of the presence of high leaf Cl concentrations. Stomatal conductance exhibited an exponential relationship with the reciprocal value of xylem sap ABA. Our results indicate that an ion-specific effect caused by Na+ in roots may account for an ABA-mediated reponse of both stomatal closure and leaf expansion inhibition.  相似文献   

12.
The effects of Si nutrition on transpiration, leaf anatomy, accumulation of Na+, K+, Cl?, P, Fe and B and some reactive oxygen species related parameters were investigated in canola plants under salinity. Plants were grown hydroponically in growth chamber under controlled conditions at 0 and 100?mM NaCl each supplied with or without 1.7?mM silicon (Si) as sodium silicate. Salinity imposed significant reduction in growth parameters of plants like fresh weights of roots and shoots and leaf area. It also led to accumulation of Na+ and Cl? and a decrease in the concentration of K+, P, B and Fe. Reduction of transpiration, stomatal density and specific leaf area in leaves and an increase in leaf thickness were amongst other symptoms in salt-affected plants. Salinity led to higher concentration of hydrogen peroxide, increased lipid peroxidation and decrease of catalase and peroxidase activity, which suggests the induction of oxidative stress in plants. Silicon nutrition could prevent toxic ions (Na+ and Cl?) accumulation while higher levels of essential minerals like K+, P and Fe were maintained in plants. Consequently, silicon nutrition decreased oxidative stress in plants, evidenced by increase in antioxidant enzyme activity, reduction in hydrogen peroxide and lipid peroxidation.  相似文献   

13.
The introduction and expression of proteinase inhibitor encoding genes into sugarcane (Saccharum officinarum L.) genome is an interesting strategy for conferring partial resistance to the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae), the major insect pest of sugarcane in Brazil. To investigate the role of soybean (Glycine max L.) Kunitz trypsin inhibitor (SKTI) and soybean Bowman–Birk inhibitor (SBBI) in the control of D. saccharalis, the cDNAs encoding these proteinase inhibitors were placed under the control of the maize ubiquitin promoter (Ubi-1), and introduced into sugarcane callus using particle bombardment. Putative transgenic plants were initially identified after regeneration from callus growing in the presence of 30 mg l–1 geneticin, while molecular characterization of transgenic plants revealed that both genes were incorporated into the sugarcane genome and expressed. We also carried out insect feeding trials using D. saccharalis neonate larvae and leaf tissue excised from propagated transgenic and untransformed plants, and found that the growth of larvae feeding on leaf tissue from transgenic plants containing BBI and Kunitz inhibitors was significantly retarded as compared to larvae fed on leaf tissue from untransformed plants. In greenhouse trials with transgenic sugarcane plants infested with D. saccharalis neonates, we found that these plants still presented the ‘dead heart’ symptom typically observed in susceptible plants in the field, suggesting that the retardation of the growth of D. saccharalis observed in the laboratory-based feeding trials was not sufficient to prevent this type of damage.  相似文献   

14.
This study investigated the impact of ultrasonic extraction (UE) on the structure and in vitro antibacterial activity of polysaccharides from sugarcane leaves (SLW). Native sugarcane leaf polysaccharides were treated with ultrasound (480 W) for 3 h to yield sugarcane leaf polysaccharides (SLU). Compared to SLW (33.59 kDa), the molecular weight of SLU (13.08 kDa) was significantly decreased, while the monosaccharide composition of SLU was unchanged. The results of SEM and XRD indicated that UE significantly changed the surface morphology of SLW and destroyed its inner crystalline structure. In vitro experiments showed that SLU had stronger antibacterial activity. These findings revealed that UE treatment could alter the tertiary structure of SLW but had no impact on its primary structure. Furthermore, the antibacterial activity of SLW could be greatly enhanced after UE treatment. As a bioactive additive, SLU has great application potential in functional foods, cosmetics, and pharmaceuticals.  相似文献   

15.
Sink-to-source transition was studied in developing sugarcane (Saccharum interspecific variety L62–96) leaves. Fully-expanded, mature sugarcane leaves were fed 14CO2 for 20 minutes, incorporating about 617 Bq. After five hours the leaves of each plant were cut into 1-cm-length segments that were weighed and then placed in scintillation cocktail for counting. All leaves younger than the leaf fed 14CO2 imported labeled photoassimilate. Three to four leaves had both importing and non-importing regions within the blade and a distinct transition region between them. A transition region was observed in leaves which had expanded to between 30 and 90 % of final blade length. Radioactivity per gram fresh weight was calculated as a measure of sink strength. Sink strength was greatest in the youngest leaf and declined with leaf age. The results of this study indicate that 1) import of photosynthate by developing sugarcane leaves occurs over a longer span of developmental ages than in dicotyledonous leaves and 2) the actual tissue region undergoing transition within such a leaf can be resolved as narrow zone between the importing and non-importing regions.  相似文献   

16.
Hydraulic conductance was measured on leaf and stem segments excised from sugarcane plants at different stages of development. Maximum transpiration rates and leaf water potential (ΨL) associated with maximum transpiration were also measured in intact plants as a function of plant size. Leaf specific hydraulic conductivity (Lsc) and transpiration on a unit leaf area basis (E) were maximal in plants with approximately 0.2 m2 leaf area and decreased with increasing plant size. These changes in Fand Lsc were nearly parallel, which prevented φL in larger plants from decreasing to levels associated with substantial loss in xylem conductivity caused by embolism formation. Coordination of changes in E and leaf hydraulic properties was not mediated by declining leaf water status, since φL increased with plant size. Hydraulic constrictions were present at nodes and in the node-leaf sheath-leaf blade pathway. This pattern of constrictions is in accord with the idea of plant segmentation into regions differing in water transport efficiency and would tend to confine embolisms to the relatively expendable leaves at terminal positions in the pathway, thereby preserving water transport through the stem.  相似文献   

17.
Soil salinity is a wide-reaching environmental problem that lowers the yield of commercial crops such as maize, rice, and sugarcane. In this study, we examined the effect of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic diazotrophic Enterobacter sp. EN-21 on growth promotion, salt tolerance, and root colonization of sugarcane. Enterobacter sp. EN-21 inoculated and uninoculated sugarcane plants were grown in a greenhouse with and without 200 mM NaCl for 7 days. Sugarcane inoculated with Enterobacter sp. EN-21 substantially increased in total plant length, dry, and fresh weights in both non-salt and salt treatments. Under the salt–stress condition, Enterobacter sp. EN-21 significantly reduced proline, malondialdehyde, ethylene emission, and Na+ accumulation in sugarcane but markedly increased total chlorophyll content and K+ accumulation. The gfp-tagged Enterobacter sp. EN-21 was observed to colonize early at the root cap, root hairs, and lateral root junctions of sugarcane and later localized in intercellular spaces. Altogether the results of this study indicated that ACC deaminase-producing Enterobacter sp. EN-21 is a true endophyte and able to promote growth and enhance salt tolerance in sugarcane.  相似文献   

18.
DAS-ELISA studies were conducted on detection of sugarcane yellow leaf virus (SCYLV) causing yellow leaf syndrome (YLS) of sugarcane in leaf and juice antigens. Among the two types of antigen sources used for the virus detection, juice antigen showed high titre for the virus as compared to leaf antigen. Assay with juice samples recorded more number of varieties positive to the virus. Further DAS-ELISA studies revealed that plants raised from disease-infected planting materials recorded high titre for SCYLV as compared to those raised from symptom-free seed canes. Similarly, assaying SCYLV titre in plant and ratoon crop in the field showed that SCYLV infection was partial in plant crop and in the subsequent ratoon crop, all the samples were positive to the virus. ELISA studies also indicated that 33 of 41 cane varieties showing YLS were positive to the virus.  相似文献   

19.
20.
为提高甘蔗抗病性,本研究根据甘蔗黄叶病毒海南分离物ScYLV-CHN-HN1全基因组序列(GenBank no. HQ342888),利用病毒CP蛋白介导的RNAi技术,针对病毒外壳蛋白CP,设计两对含有酶切位点的特异性引物,CPsf1/CPsr1和CPasf1/CPasr1,以构建好的pMD19-T/CP质粒为模板,pRNAi1017为中间载体,分别合成构建干扰载体的正反向片段pRNAi-CP-F-R,将CP正反向片段分别插入表达载体pCAMBIA2300的相应位置,构建含有发卡结构的RNAi载体p2300-CP-F-R,经过PstⅠ酶切鉴定,证明载体构建成功。通过农杆菌介导的方法,以干扰表达载体p2300-CP-F-R转化烟草,经过PCR检测,得到12株阳性转基因植株,Southern blot杂交和半定量RT-PCR对其检测,证明干扰片段已经整合烟草基因组中并进行了转录,该结果为RNAi介导抗病毒甘蔗育种研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号