首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The final ethanol concentration achieved was increased by 17% (to 103 g ethanol/l) when excess assimilable nitrogen was added to the batch very high gravity (VHG) ethanolic fermentations by Saccharomyces cerevisiae. The supplementation of the media with 12 g yeast extract l–1, 0.3 g cell walls l–1, 3 g glycine l–1 and 20 g soya flour l–1 led to halving reduction of the fermentation time to 28 h. The ethanol productivity was enhanced by more than 50% (to achieved value 3.3 g l–1 h–1).  相似文献   

2.
High concentrations of 422 g sophorolipids l–1 were produced using a two-stage cultivation process: first deproteinized whey concentrate (DWC) containing 110 g lactose l–1 was used for cultivation of the yeast Cryptococcus curvatus ATCC 20509, resulting in 34 g dry weight l–1, 20 g single-cell oil l–1 and reducing the chemical oxygen demand (COD) from 159 g l–1 to 35 g oxygen l–1. Afterwards cells were disrupted by passing the cell suspension directly through a high pressure laboratory homogeniser. After autoclavation, the resulting crude cell extract containing the single-cell oil served as substrate for growth of Candida bombicola ATCC 22214 and for sophorolipid production in a second stage. When the single-cell oil was consumed, repeated feeding of 400 g rapeseed oil l–1 was started increasing the yield of sophorolipids to 422 g l–1. A simple technique for product isolation, sedimentation, could be used to harvest the crude sophorolipids. © Rapid Science Ltd. 1998  相似文献   

3.
Production of clavulanic acid (CA) by Streptomyces clavuligerus ATCC 27064 in shake-flask culture (28 °C, 250 rev min–1) was evaluated, with media containing different types and concentrations of edible vegetable oil. Firstly, four media based on those reported in the literature were examined. The medium containing soybean oil and starch as carbon and energy source gave the best production results. This medium, with the starch replaced by glycerol, and with various soybean oil concentrations (16, 23 and 30 g l–1) was utilized to further investigate CA production. Medium containing 23 g l–1 led to the highest CA productivity (722 mg l–1 in 120 h) and that one containing 30 g l–1 gave the highest CA titre (753 mg l–1 in 130 h). Also, substitution of corn and sunflower edible oils furnished similarly good results in terms of CA titre and productivity. It can be concluded that easily available vegetable oil is a very promising substrate for CA production, since it is converted slowly to glycerol and fatty acids, which are the main carbon and energy source for the microorganism.  相似文献   

4.
Viscosity regulation allowed the sedimentation of dextran to be increased from 1.89 to 2.89 g.h–1 within a novel centrifugal bioreactor. At an enzyme activity of 187 U, dextran pelleting was 1.66 mg g.h–1. U which was 50% greater than at an enzyme activity of 1344 U. Reactor productivity, at 1.5–2 g.h–1, was similar for both batch and semi-continuous trials. Rotor core design influenced productivity. © Rapid Science Ltd. 1998  相似文献   

5.
When Rhizopus oryzae was grown on medium containing cassava bagasse plus soybean meal (5:5 w/w), CO2 production was at its highest (200 ml.l–1) while highest volatile metabolite production was with amaranth grain as substrate (282.8 ml.l–1). In the headspace, ethanol was the most abundant compound (more than 80%). Acetaldehyde, 1-propanol, ethyl acetate, ethyl propionate and 3-methyl butanol were also present. CO2 and volatile metabolite productions reached their maxima around 20 h and 36 h, respectively. © Rapid Science Ltd. 1998  相似文献   

6.
Summary Mead was produced by immobilized cells of Hansenula anomala in calcium alginate gels. The immobilized cell beads of 3 mm diameter packed in column reactors of dimensions 2.2x60, 4x40 and 8x80 cm, produced mead containing maximum concentrations of ethanol and ethyl acetate of 70 g/l and 730 mg/l, respectively at a dilution rate of 0.1 h–1. The maximum alcohol productivity achieved was 23.1 g/l·h at a dilution rate of 0.33 h–1. With intermittent regenerations of the cells the reactor operated continuously for 110 days. This process enables the quick production of matured mead by a single culture and the elimination of the traditionally used long aging periods.  相似文献   

7.
Summary A fibrous support was used forZ. mobilis immobilization. The system showed a broad optimum temperature range (25–35°C) for highest ethanol productivity, ethanol yield and glucose conversion during continuous fermentation of a 100 g/L glucose medium. Ethanol production and glucose conversion kept steady during two months of continuous operation at D=1h–1.  相似文献   

8.
A two-stage rumen-derived anaerobic digestion process was tested for the conversion of water hyacinth shoots and a mixture of the shoots with cowdung (7:3) into biogas. Under conditions similar to those of the rumen and loading rates (LR) in the range of 11.6–19.3g volatile solids (VS) l–1d–1 in the rumen reactor, the degradation efficiencies were 38% for the shoots and 43% for the mixture. The major fermentation products were volatile fatty acids (VFA) with a maximum yield of 7.92mmolg–1 VS digested, and biogas with a yield of 0.2lg–1 VS digested. The effect of varying LR, solid retention time (SRT) and dilution rates on the extent of degradation of the water hyacinth–cowdung mixture was examined. Overall conversion of the substrate was highest at the loading rate of 15.4gVS.l–1d–1. Varying the retention times between 60 and 120h had no effect on the degradation efficiency, but a decrease was observed at retention times below 60h. The overall performance of the reactor was depressed by changing the dilution rate from 0.5 to 0.34h–1. By applying a LR of 15.4VS. l–1d–1, a SRT of 90h and a dilution rate of 0.5h–1 in the rumen reactor, and connecting it to a methanogenic reactor of the upflow anaerobic sludge blanket type, 100% conversion efficiency of the VFA into biogas with a methane content of 80% was achieved. The average methane gas yield was 0.44lg–1 VS digested.  相似文献   

9.
To enhance the productivity of anthraquinone colorants during madder (Rubia akane Nakai) cell cultures, the effects of permeabilizing agents on the production of anthraquinone colorants were investigated. Tween 80 was the best among the permeabilizing agents tested. Addition of 1% Tween 80 increased the total and released concentrations of anthraquinones about 1.6 times (159 mg l–1) and 14 times (71 mg l–1), respectively. In addition, anthraquinone production was increased to 220 mg l–1, 2.2 times as the level of control culture by simultaneous use of 1% Tween 80, 5 mg chitosan/l and 2% (w/v) XAD-7. Also, 47% (105 mg l–1) of total anthraquinones was released to medium or adsorbed on XAD-7.  相似文献   

10.
Glycerol was studied as a substrate for astaxanthin by Phaffia rhodozyma PR 190. With co-utilisation of yeast extract and peptone, the maximum specific growth rate was 0.24 ± 0.02 h–1. Astaxanthin percentage in total pigment is constant (0.78 mg/g) and its yield from glycerol is always 0.97 mg/g. The yield of biomass from glycerol alone is 0.50 ± 0.02 g/g. The specific rate of astaxanthin production versus the cell growth rate reached a maximum for an optimal specific growth rate of 0.075 h–1. For this optimal value, the maximum specific astaxanthin production rate is 0.09 ± 0.01 mg/g.h. The best astaxanthin results were : 33.7 mg/l, 0.2 mg/l.h and 1.8 mg/g yeast after a fermentation term of 168 hours. Our results suggest a strategy of astaxanthin production in fed batch culture or chemostat at a growth rate of 0.075 h–1. © Rapid Science Ltd. 1998  相似文献   

11.
Optimization of bioprocess conditions increased exopolysaccharide production by a strain of Klebsiella oxytoca from 6g/l to 15g/l; this corresponded to an increase in medium viscosity from 36cP at 12s–1 to 20,000 cP at 0.6 s–1. A combination of equal proportions of tryptone nitrogen and urea nitrogen proved to be the best nitrogen source. Lactose was shown to be the preferred carbon source. At an optimum temperature of 25°C, a pH of 7 was found to be the best for exopolysaccharide production. The concentration of exopolysaccharide produced on whey, enriched whey, enriched whey permeate and lactose-rich medium was comparable.  相似文献   

12.
Summary A new variant, Candida boidinii variant 60, which is less sensitive to methanol and formaldehyde shocks was grown in continuous cultures with methanol as sole carbon source. The substrate concentration in the feeding medium was either 1% methanol or 3% methanol. Biomass production, methanol consumption, the formation of formaldehyde and gas exchange were measured at different dilution rates. With low methanol feeding (10 g/l) maximal productivity of 0.44 g biomass/l·h is obtained at a dilution rate of 0.14 h–1. Maximal specific growth rate is 0.18 h–1. A yield of 0.32 g biomass/g methanol was obtained and the respiration quotient was determined as 0.55. Independently of initial substrate concentration, biomass decreases if methanol and formaldehyde are accumulating in the culture broth.In the culture with high methanol feeding (30 g/l) cell concentratioon increases up to 9 g/l at D=0.04 h–1. At higher dilution rates methanol and form-aldehyde appear in the medium. Formaldehyde is then preferably oxidized without energy advantages for the cells. It seems that this enables the cells to overcome toxic effects caused by methanol and formaldehyde.  相似文献   

13.
By adding 50% (v/v) filtered culture broth to fresh MS medium, the specific growth rate of Panax notoginseng was increased from 0.046 d–1 to 0.068 d–1, and the polysaccharide production and productivity reached 1.21 g l–1 and 61 mg/(ld), respectively, which were 1.3- and 2.3-fold of the control. Further supplementation of the conditioned medium with sucrose, ammonium, nitrate and phosphate gave a cell density of 13.7 g l–1 and a specific growth rate of 0.086 d–1. Polysaccharide production was 1.65 g l–1 and the productivity was 78 mg/(ld).  相似文献   

14.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

15.
The production of exopolysaccharide (EPS) by a strain of the basidiomycete Daedalea quercina was investigated. Of seven different carbon sources, glucose and dextrins gave the highest crude polysaccharide yield (4.7–5 g l–1, 55–60% carbohydrate content) in shake-flask cultures, at 14 days of fermentation. Experiments carried out in a 10 l fermenter, at two different agitation speeds, gave the best results at 300 rpm, resulting in 12–14 g l–1 of crude exopolysaccharide in 9–11 days. Fractionation of the EPS samples, carried out by tangential flow ultrafiltration, evidenced a single EPS fraction (MW >30 000 Da) in samples from glucose, while two fractions (MW > 30 000 Da and 30 000 > MW > 10 000 Da) were present in samples from dextrins. Fractions characterization by HPLC and proton NMR spectroscopy revealed diversity in composition and structure in the obtained EPS: from glucose mainly an -linked mannan, and from dextrins mainly an - and -linked glucan.  相似文献   

16.
Summary This paper presents a study of propionic acid and propionibacteria production from whey by usingPropionibacterium acidi-propionici in continuous fermentation with cell recycle. The highest propionic acid volumetric productivity achieved was 5 g.l–1.h–1 with no biomass bleeding. A maximal biomass concentration of 130 g.l–1 was achieved before initiating biomass bleeding to give a biomass volumetric productivity of 3.2 g.l–1.h–1 with a biomass of 75 g.l–1 and a propionic acid productivity of 3.6 g.l–1.h–1 (for about 100 hours i.e. more than 50 residence times).  相似文献   

17.
Cellulase-free xylanase production by T. lanuginosus MH4 was investigated in a 3-litre stirred tank bioreactor under different agitation rates and an aeration rate of 1v/v/m. The cultivation time in the bioreactor was reduced significantly over that in shake culture conditions. A xylanase productivity of 0.1 mkat1–1h–1 was achieved on xylan in the bioreactor. This was nearly double to that obtained in shake culture. The agitation rates influenced both growth and enzyme secretion in the bioreactor. The highest level of biomass concentration and activities of both xylanase and -xylosidase were obtained at 150 revmin–1  相似文献   

18.
Lactulose production from lactose and fructose was investigated with several commercial -galactosidases. The enzyme from Kluyveromyces lactis exhibited the highest lactulose productivity among the -galactosidases tested. The reaction conditions for lactulose production were optimized using cells that had been permeabilized by treatment with 50% (v/v) ethanol: cell concentration, 10.4 g l–1; concentration of substrates, 40% (w/v) lactose and 20% (w/v) fructose; temperature, 60°C; pH 7.0. Under these conditions, the permeabilized cells produced approximately 20 g l–1 lactulose in 3 h with a lactulose productivity of 6.8 g l–1 h–1. These results represent 1.3- and 2.1-fold increases in lactulose concentration and productivity compared with untreated washed cells. This is the first reported trial of enzymatic synthesis of lactulose using permeabilized yeast cells.  相似文献   

19.
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l–1 day–1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l–1 day–1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l–1 day–1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.  相似文献   

20.
The optimum dilution rate for 2, 3-butanediol (BDL) production by Paenibacillus polymyxa was 0.2 h1 and the optical purity of BDL remained above 98 % at all dilution rates. With decreasing culture pH, ethanol and BDL production increased, whereas the optical purity of BDL decreased to 94 % at pH 5.7. In the chemostat culture at pH 6.3 and a 0.1 h1 dilution rate, the optimum air supply for BDL production was 200 ml min–1 in which the O2 uptake rate was 6.7 mmol l–1 h–1. Under this condition, the optical purity of BDL decreased to 93 %. © Rapid Science Ltd. 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号