首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymorphisms as modulators of genotoxicity and cancer   总被引:4,自引:0,他引:4  
Cancer arises as a result of several factors, including multiple genes and environmental exposures. It is generally accepted that genetic polymorphisms are associated with most common disorders like cancer. The majority of polymorphisms are single nucleotide polymorphisms (SNPs) which occur with a frequency of 10(-6). Susceptibility-conferring alleles are not sufficient to cause disease, but modulate the risk in combination with other alleles and environmental exposures, except in the extreme case of Mendelian cancer syndromes (e.g. FAP, HNPCC, Rb). The Environmental Genome Project identifies, among others, two lines of research along which we have been working and are the topic of the present paper, namely (i) allele-disease associations and (ii) functional studies of allelic variants. Case-control association studies conducted by us and others showed that polymorphism at a single site could increase risk-predictability by a factor < 2. It is known, however, that the individual risk predictability increases by associating multiple genetic polymorphisms as was demonstrated for breast, renal and thyroid cancer. Functional genomics of the putative susceptibility-alleles involved in cancers can improve substantially the strength of association studies. This calls for cell-systems capable of tracking different gene activities, which may clarify the possible role of allelic variants in certain cancers. This endeavour is likely to be met by the bacterial tester strain, MTC, described here.  相似文献   

2.
Recognition that children are a potentially susceptible subpopulation has led to the development of child-specific sensitivity factors. Establishing reliable sensitivity factors in support of risk assessment of early-life stage exposures can be aided by evaluating studies that enhance our understanding both of the biological basis of disease processes and the potential role of environmental exposures in disease etiology. For these reasons, we evaluated childhood acute lymphocytic leukemia (ALL) studies from the point of view of mechanism and etiology. ALL is the most common form of childhood cancer proposed to result from a prenatal primary event and a postnatal second event. This multi-stage model is supported by the observation that chromosomal translocations/fusion genes (e.g., TEL-AML1) involved in producing ALL are detected at birth (prenatal event), and a postnatal event (e.g., TEL deletion) is required for disease manifestation. It appears that a proportion of ALL cases are the result of environmental exposures, in which case preconceptional, prenatal, and postnatal stages are likely to be critical exposure windows. To this end, we recognized postnatal infection-related risk factors as potential candidates associated with the ALL second event. Additionally, we discuss use of ALL-associated fusion genes and genetic polymorphisms, together or separately, as indicators of ALL susceptibility and increased risk. The possibility of using fusion genes alone as biomarkers of response is also discussed because they can serve as predictors of key events in the development of a mode of action (a sequence of key events, starting with interaction of an agent with a cell, ultimately resulting in cancer formation) for particular environmental exposures. Furthermore, we discuss use of an initiated animal model for ALL, namely transgenic mice with TEL-AML1 expression, for exploring mechanisms by which different classes of environmental exposures could be involved in inducing the postnatal step in ALL formation.  相似文献   

3.
《Cancer epidemiology》2014,38(5):479-489
Down syndrome (DS) is a common congenital anomaly, and children with DS have a substantially higher risk of leukemia. Although understanding of genetic and epigenetic changes of childhood leukemia has improved, the causes of childhood leukemia and the potential role of environmental exposures in leukemogenesis remain largely unknown. Although many epidemiologic studies have examined a variety of environmental exposures, ionizing radiation remains the only generally accepted environmental risk factor for childhood leukemia. Among suspected risk factors, infections, exposure to pesticides, and extremely low frequency magnetic fields are notable. While there are well-defined differences between leukemia in children with and without DS, studies of risk factors for leukemia among DS children are generally consistent with trends seen among non-DS (NDS) children.We provide background on DS epidemiology and review the similarities and differences in biological and epidemiologic features of leukemia in children with and without DS. We propose that both acute lymphoblastic and acute myeloblastic leukemia among DS children can serve as an informative model for development of childhood leukemia. Further, the high rates of leukemia among DS children make it possible to study this disease using a cohort approach, a powerful method that is unfeasible in the general population due to the rarity of childhood leukemia.  相似文献   

4.
The impact of new technologies on human population studies   总被引:4,自引:0,他引:4  
Human population studies involve clinical or epidemiological observations that associate environmental exposures with health endpoints and disease. Clearly, these are the most sought after data to support assessments of human health risk from environmental exposures. However, the foundations of many health risk assessments rest on experimental studies in rodents performed at high doses that elicit adverse outcomes, such as organ toxicity or tumors. Using the results of human studies and animal data, risk assessors define the levels of environmental exposures that may lead to disease in a portion of the population. These decisions on potential health risks are frequently based on the use of default assumptions that reflect limitations in our scientific knowledge. An important immediate goal of toxicogenomics, including proteomics and metabonomics, is to offer the possibility of making decisions affecting public health and public based on detailed toxicity, mechanistic, and exposure data in which many of the uncertainties have been eliminated. Ultimately, these global technologies will dramatically impact the practice of public health and risk assessment as applied to environmental health protection. The impact is already being felt in the practice of toxicology where animal experimentation using highly controlled dose-time parameters is possible. It is also being seen in human population studies where understanding human genetic variation and genomic reactions to specific environmental exposures is enhancing our ability to uncover the causes of variations in human response to environmental exposures. These new disciplines hold the promise of reducing the costs and time lines associated with animal and human studies designed to assess both the toxicity of environmental pollutants and efficacy of therapeutic drugs. However, as with any new science, experience must be gained before the promise can be fulfilled. Given the numbers and diversity of drugs, chemicals and environmental agents; the various species in which they are studied and the time and dose factors that are critical to the induction of beneficial and adverse effects, it is only through the development of a profound knowledge base that toxicology and environmental health can rapidly advance. The National Institute of Environmental Health Sciences (NIEHS), National Center for Toxicogenomics and its university-based Toxicogenomics Research Consortium (TRC), and resource contracts, are engaged in the development, application and standardization of the science upon which to the build such a knowledge base on Chemical Effects in Biological Systems (CEBS). In addition, the NIEHS Environmental Genome Project (EGP) is working to systematically identify and characterize common sequence polymorphisms in many genes with suspected roles in determining chemical sensitivity. The rationale of the EGP is that certain genes have a greater than average influence over human susceptibility to environmental agents. If we identify and characterize the polymorphism in those genes, we will increase our understanding of human disease susceptibility. This knowledge can be used to protect susceptible individuals from disease and to reduce adverse exposure and environmentally induced disease.  相似文献   

5.
Mutations in one of the DNA repair genes are one of the most common reasons for cancer, and it may be assumed that the individual genetic background modulating the DNA repair capacity may affect the susceptibility to cancer. Numerous polymorphisms (mainly SNPs) have been identified for DNA repair genes, although their functional outcome and phenotypic effect is often unknown. The aim of the present review is to evaluate the studies investigating a possible influence of DNA repair polymorphisms in the risk of sporadic colorectal cancer and/or adenoma. Overall, no relevant common findings emerge among the studies, except for some statistically significant associations between polymorphisms in the XRCC1 and XPD genes, mainly for colorectal adenoma risk. Other individual associations remain to be confirmed. This inconclusive data may suggest that the modulation of cancer risk depends not only on a single gene/SNP, but also on a joint effect of multiple polymorphisms (or haplotypes) within different genes or pathways, in close interaction with environmental factors. The relevance of many low-penetrance genes in cancer susceptibility is supposed to be very subtle. Several reviewed association studies revealed weaknesses in their design. However, there has been a progressive improvement over the years in aspects such as simultaneous genotyping and combined analyses of different polymorphisms in larger numbers of patients and controls, as well as stratification of results by ethnicity, gender, and tumor localization. This gained experience shows that only carefully designed studies of a sufficient statistical power may resolve the relationships between polymorphisms and colorectal cancer risk.  相似文献   

6.
Background: Epidemiological studies have identified potentially modifiable risks for colorectal cancer, including alcohol intake, diet and a sedentary lifestyle. Modelling these environmental factors alongside genetic risk is critical in obtaining accurate estimates of disease risk and improving our understanding of behavioural modifications. Methods: 14 independent single nucleotide polymorphisms identified though GWAS studies and reported on by the international consortium COGENT were used to model genetic disease risk at a population level. Six well validated environmental risks were selected for modelling together with the genetic risk factors (alcohol intake; smoking; exercise levels; BMI; fibre intake and consumption of red and processed meat). Through a simulation study using risk modelling software, we assessed the potential impact of behavioural modifications on disease risk. Results: Modelling the genetic data alone leads to 24% of the population being classified as reduced risk; 60% average risk; 10% elevated risk and 6% high risk for colorectal cancer. Adding alcohol consumption to the model reduced the elevated and high risk categories to 9% and 5% respectively. The simulation study suggests that a substantial proportion of individuals could reduce their disease risk profile by altering their behaviour, including reclassification of over 62% of heavy drinkers. Conclusion: Modelling lifestyle factors alongside genetic risk can provide useful strategies to select individuals for screening for colorectal cancer risk. Impact: Quantifying the impact of moderating behaviour, particularly related to alcohol intake and obesity levels, is beneficial for informing health campaigns and tailoring prevention strategies.  相似文献   

7.

Background

Individual variations in gastric cancer risk have been associated in the last decade with specific variant alleles of different genes that are present in a significant proportion of the population. Polymorphisms may modify the effects of environmental exposures, and these gene-environment interactions could partly explain the high variation of gastric cancer incidence around the world. The aim of this report is to carry out a systematic review of the published meta-analyses of studies investigating the association between gene polymorphisms and gastric cancer risk, and describe their impact at population level. Priorities on the design of further primary studies are then provided.

Methods

A structured bibliographic search on Medline and EMBASE databases has been performed to identify meta-analyses on genetic susceptibility to gastric cancer, without restriction criteria. We report the main results of the meta-analyses and we describe the subgroup analyses performed, focusing on the detection of statistical heterogeneity. We investigated publication bias by pooling the primary studies included in the meta-analyses, and we computed the population attributable risk (PAR) for each polymorphism.

Results

Twelve meta-analyses and one pooled-analysis of community based genetic association studies were included, focusing on nine genes involved in inflammation (IL-1β, IL-1RN, IL-8), detoxification of carcinogens (GSTs, CYP2E1), folate metabolism (MTHFR), intercellular adhesion (E-cadherin) and cell cycle regulation (p53). According to their random-Odds Ratios, individuals carrying one of the IL-1RN *2, IL-1β -511T variant alleles or homozygotes for MTHFR 677T are significantly at higher risk of gastric cancer than those with the wild type homozygote genotypes, showing high PARs. The main sources of heterogeneity in the meta-analyses were ethnicity, quality of the primary study, and selected environmental co-exposures. Effect modification by Helicobacter pylori infection for subjects carrying the unfavourable variant of IL-1 polymorphisms and by low folate intake for individuals homozygotes for MTHFR 677T allele has been reported, while genes involved in the detoxification of carcinogens show synergistic interactions. Publication bias was observed (Egger test, p = 0.03).

Discussion

The published meta-analyses included in our systematic review focused on polymorphisms having a small effect in increasing gastric cancer risk per se. Nevertheless, the risk increase by interacting with environmental exposures and in combination with additional unfavourable polymorphisms. Unfortunately meta-analyses are underpowered for many subgroup analyses, so additional primary studies performed on larger population and collecting data on environmental and genetic co-exposures are demanded.Key Words: Gastric cancer, meta-analysis, heterogeneity, polymorphism, population attributable risk.  相似文献   

8.
Colorectal cancer is one of the most common internal malignancies in Western society. The cause of this disease appears to be multifactorial and involves genetic as well as environmental aspects. The human colon is continuously exposed to a complex mixture of compounds, which is either of direct dietary origin or the result of digestive, microbial and excretory processes. In order to establish the mutagenic burden of the colorectal mucosa, analysis of specific compounds in feces is usually preferred. Alternatively, the mutagenic potency of fecal extracts has been determined, but the interpretation of these more integrative measurements is hampered by methodological shortcomings. In this review, we focus on exposure of the large bowel to five different classes of fecal mutagens that have previously been related to colorectal cancer risk. These include heterocyclic aromatic amines (HCA) and polycyclic aromatic hydrocarbons (PAH), two exogenous factors that are predominantly ingested as pyrolysis products present in food and (partially) excreted in the feces. Additionally, we discuss N-nitroso-compounds, fecapentaenes and bile acids, all fecal constituents (mainly) of endogenous origin. The mutagenic and carcinogenic potency of the above mentioned compounds as well as their presence in feces, proposed mode of action and potential role in the initiation and promotion of human colorectal cancer are discussed. The combined results from in vitro and in vivo research unequivocally demonstrate that these classes of compounds comprise potent mutagens that induce many different forms of genetic damage and that particularly bile acids and fecapentaenes may also affect the carcinogenic process by epigenetic mechanisms. Large inter-individual differences in levels of exposures have been reported, including those in a range where considerable genetic damage can be expected based on evidence from animal studies. Particularly, however, exposure profiles of PAH and N-nitroso compounds (NOC) have to be more accurately established to come to a risk evaluation. Moreover, lack of human studies and inconsistency between epidemiological data make it impossible to describe colorectal cancer risk as a result of specific exposures in quantitative terms, or even to indicate the relative importance of the mutagens discussed. Particularly, the polymorphisms of genes involved in the metabolism of heterocyclic amines are important determinants of carcinogenic risk. However, the present knowledge of gene-environment interactions with regard to colorectal cancer risk is rather limited. We expect that the introduction of DNA chip technology in colorectal cancer epidemiology will offer new opportunities to identify combinations of exposures and genetic polymorphisms that relate to increased cancer risk. This knowledge will enable us to improve epidemiological study design and statistical power in future research.  相似文献   

9.
Familial risks for cancer can be used in many ways in guiding gene identification efforts and, more broadly, in understanding cancer etiology. Gene identification efforts may be properly designed and targeted if the familial risks are well characterized and the mode of inheritance is identified. Single nucleotide polymorphisms (SNPs) are extensively used in case-control studies of practically all cancer types. They are used for the identification of inherited cancer susceptibility genes and those that may interact with environmental factors. However, being genetic markers, they are applicable only on heritable conditions, which is often a neglected fact. Based on the data in the nationwide Swedish Family-Cancer Database, we review familial risks for all main cancers and discuss the evidence for a heritable component in cancer. The available evidence, including differences in cancer incidence between regions and temporal changes within regions, indicates that cancer is mainly an environmental disease, with a minor heritable etiology. The large environmental component will hamper the success of SNP-based genetic association studies. Empirical familial risks should be used to evaluate the feasibility of such studies. We develop figures for the assessment of genetic parameters based on familial risks. Such data are helpful in the estimation of the expected genetic effects in cancer. Overall, we consider the likelihood of a successful application of SNPs in gene-environment studies small, unless established environmental risk factors are tested on proven candidate genes.  相似文献   

10.
Olson PN 《Theriogenology》2007,68(3):378-381
A high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms, has been reported. Such new tools offer scientists amazing opportunities to define genetic, nutritional, environmental, and other risk factors for various canine diseases. Because many of the diseases that affect man's best friend also affect us, understanding a dog's disease may lead to new preventions and therapies for diseases that affect both dogs and people. Since a dog's life span is shorter than that for a human, monitoring potential risk factors in a well-controlled population of dogs is possible. Such a population should be one where dogs live in close relationship with their owners. Although longitudinal studies have been previously conducted on animals housed in laboratory environments, the natural environment offers a chance to study dogs in environments shared by their owners. If dogs are carefully monitored, and select exposures defined, considerable information could be collected in a dog's lifetime--the next 10-20 years. Such information could hold the clues for important discoveries, including causes and cures for cancer.  相似文献   

11.
Rundle A 《Mutation research》2006,600(1-2):23-36
Carcinogen-DNA adducts are thought to be a useful biomarker in epidemiologic studies seeking to show that environmental exposures to xenobiotics cause cancer. This paper reviews the literature in this field from an epidemiologic perspective and identifies several common problems in the epidemiologic design and analysis of these studies. Carcinogen-DNA adducts have been used in studies attempting to link xenobiotic exposures to hepatocellular carcinoma, smoking related cancers and breast cancer. Adduct measurements have been useful in further implicating aflatoxin exposure in the etiology of hepatocellular carcinoma. For smoking related cancers, associations with carcinogen-DNA adducts are commonly seen in current smokers but less so in ex- or non-smokers. In breast cancer the associations have been inconsistent and weak and there is little evidence that carcinogen-DNA adducts implicate xenobiotic exposures in the etiology of breast cancer. Methodological issues common to these studies are the use of target versus surrogate tissues and how this choice impacts control selection, disease effects on adduct levels, the time period reflected by adduct levels, the use of inappropriate statistical analyses and small sample sizes. It is unclear whether the lack of association between carcinogen-DNA adducts and cancer reflects a lack of association between the xenobiotic exposure of interest and cancer or the effects of these methodological issues. A greater focus needs to be placed on designs that allow measurements of adduct levels in tissues collected years prior to cancer diagnosis, there is little need for further hospital based case-control studies in which adducts are measured at the time of or after diagnosis. New designs that address these issues are suggested in the paper.  相似文献   

12.
The genetic etiology of most cancers remains largely unclear and it has been hypothesised that common genetic variants with modest effects on disease susceptibility cause the bulk of this unexplained risk. Case-control association studies are considered the most effective strategy to identify these low-penetrance genes. While traditionally, such studies have focused on putative functional single nucleotide polymorphisms (SNPs) in candidate genes, a more comprehensive approach can now be taken, as a result of a number of recent developments: the mapping of the human genome, including the identification of almost ten million SNPs; and the development of high-throughput genotyping technologies that enable hundreds of thousands of SNPs to be genotyped in a single reaction, in multiple subjects and at an affordable cost. All common genomic variation can be captured by genotyping SNPs in gene-, pathway- or genome-wide-based strategies and these are now being applied to many diseases, including cancer. We present an outline of each of these approaches, including recent published examples, and discuss a number of challenges that remain to be addressed.  相似文献   

13.
Molecular epidemiology, biomarkers and cancer prevention.   总被引:3,自引:0,他引:3  
Molecular epidemiological studies within the field of cancer research provide the potential for elucidating the carcinogenic cascade at the molecular level. Identification of susceptible subsets of the population, based on polymorphisms in genes involved in carcinogenesis, has the potential to delineate more clearly those factors that might increase cancer risk among some, but not all, individuals. Rapid advances in human genomics are making it possible to develop detailed profiles of susceptible subgroups based upon genetic variants in multiple pathways. Here we discuss examples of recent susceptibility studies involving genes, such as those involved in carcinogen metabolism, DNA repair, cell cycle and immune status, that hold the promise of increasing our understanding of cancer etiology and possible prevention strategies.  相似文献   

14.
Cancer susceptibility is a complex interaction of an individual's genetic composition and environmental exposures. Huge strides have been made in understanding cancer over the past 100 yr, from recognition of cancer as a genetic disease, to identification of specific carcinogens, isolation of oncogenes, and recognition of tumor suppressors. A tremendous amount of knowledge has accumulated about the etiology of cancer. Cancer genetics has played a significant role in these discoveries. Analysis of high-risk familial cancers has led to the discovery of new tumor suppressor genes and important cancer pathways. These families, however, represent only a small fraction of cancer in the general population. Most cancer is instead probably the result of an intricate interaction of polymorphic susceptibility genes with the sea of environmental exposures that humans experience. Although the central cadre of cancer genes is known, little is understood about the peripheral genes that likely comprise the polymorphic susceptibility loci. The challenge for cancer genetics is therefore to move forward from the mendelian genetics of the rare familial cancer syndromes into the field of quantitative trait loci, susceptibility factors, and modifier genes. By identifying the genes that modulate an individual's susceptibility to cancer after an environmental exposure, researchers will be able to gain important insights into human biology, cancer prevention, and cancer treatment. This article summarizes the current state of quantitative trait genetic analysis and the tools, both proven and theoretical, that may be used to unravel one of the great challenges in cancer genetics.  相似文献   

15.
Goldgar DE 《Biochimie》2002,84(1):19-25
A number of relatively rare, high-risk genes have been identified which predispose to common cancers such as breast, colon, and melanoma. Although these are clearly important in the clinical setting, it is also relevant to discuss the impact of these genes at the population level and to contrast these with that which could be ascribed to more common genetic variants which only confer a modest increased risk of cancer. In this review, we examine inferences about the role of genetics in cancer from ecological studies of incidence patterns from a number of population-based studies of familial and attributable risk. The relationship between the genetic model (genotypic risk, allele frequency, mode of inheritance) and the expected impact in the population in terms of both attributable risk and familial risk is presented. The advantages and limitations of using cancer occurrence in twins to measure the genetic contribution to specific cancer sites is discussed. The potential role of lower-penetrance genes in the overall cancer burden may be significant but may pose significant problems in the public health arena.  相似文献   

16.
It has been suggested that the supermarket of today will be the pharmacy of tomorrow. Such statements have been derived from recognition of our increasing ability to optimize nutrition, and maintain a state of good health through longer periods of life. The new field of nutrigenomics, which focuses on the interaction between bioactive dietary components and the genome, recognizes that current nutritional guidelines may be ideal for only a relatively small proportion of the population. There is good evidence that nutrition has significant influences on the expression of genes, and, likewise, genetic variation can have a significant effect on food intake, metabolic response to food, individual nutrient requirements, food safety, and the efficacy of disease-protective dietary factors. For example, a significant number of human studies in various areas are increasing the evidence for interactions between single nucleotide polymorphisms (SNPs) in various genes and the metabolic response to diet, including the risk of obesity. Many of the same genetic polymorphisms and dietary patterns that influence obesity or cardiovascular disease also affect cancer, since overweight individuals are at increased risk of cancer development. The control of food intake is profoundly affected by polymorphisms either in genes encoding taste receptors or in genes encoding a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Total dietary intake, and the satiety value of various foods, will profoundly influence the effects of these genes. Identifying key SNPs that are likely to influence the health of an individual provides an approach to understanding and, ultimately, to optimizing nutrition at the population or individual level. Traditional methods for identification of SNPs may involve consideration of individual variants, using methodologies such as restriction fragment length polymorphisms or quantitative real-time PCR assays. New developments allow identification of up to 500,000 SNPs in an individual, and with increasingly lowered pricings these developments may explode the population-level potential for dietary optimization based on nutrigenomic approaches.  相似文献   

17.
The formation of micronuclei (MN) is extensively used in molecular epidemiology as a biomarker of chromosomal damage, genome instability, and eventually of cancer risk. The occurrence of MN represents an integrated response to chromosome-instability phenotypes and altered cellular viabilities caused by genetic defects and/or exogenous exposures to genotoxic agents. The present article reviews human population studies addressing the relationship between genetic polymorphisms and MN formation, and provides insight into how genetic variants could modulate the effect of environmental exposures to genotoxic agents, host factors (gender, age), lifestyle characteristics (smoking, alcohol, folate), and diseases (coronary artery disease, cancer). Seventy-two studies measuring MN frequency either in peripheral blood lymphocytes or exfoliated cells were retrieved after an extensive search of the MedLine/PubMed database. The effect of genetic polymorphisms on MN formation is complex, influenced to a different extent by several polymorphisms of proteins or enzymes involved in xenobiotic metabolism, DNA repair proteins, and folate-metabolism enzymes. This heterogeneity reflects the presence of multiple external and internal exposures, and the large number of chromosomal alterations eventually resulting in MN formation. Polymorphisms of EPHX, GSTT1, and GSTM1 are of special importance in modulating the frequency of chromosomal damage in individuals exposed to genotoxic agents and in unexposed populations. Variants of ALDH2 genes are consistently associated with MN formation induced by alcohol drinking. Carriers of BRCA1 and BRCA2 mutations (with or without breast cancer) show enhanced sensitivity to clastogens. Some evidence further suggests that DNA repair (XRCC1 and XRCC3) and folate-metabolism genes (MTHFR) also influence MN formation. As some of the findings are based on relatively small numbers of subjects, larger scale studies are required that include scoring of additional endpoints (e.g., MN in combination with fluorescent in situ hybridization, analysis of nucleoplasmic bridges and nuclear buds), and address gene-gene interactions.  相似文献   

18.
Establishing causal relationships between environmental exposures and common diseases is beset with problems of unresolved confounding, reverse causation and selection bias that may result in spurious inferences. Mendelian randomization, in which a functional genetic variant acts as a proxy for an environmental exposure, provides a means of overcoming these problems as the inheritance of genetic variants is independent of—that is randomized with respect to—the inheritance of other traits, according to Mendel’s law of independent assortment. Examples drawn from exposures and outcomes as diverse as milk and osteoporosis, alcohol and coronary heart disease, sheep dip and farm workers’ compensation neurosis, folate and neural tube defects are used to illustrate the applications of Mendelian randomization approaches in assessing potential environmental causes of disease. As with all genetic epidemiology studies there are problems associated with the need for large sample sizes, the non-replication of findings, and the lack of relevant functional genetic variants. In addition to these problems, Mendelian randomization findings may be confounded by other genetic variants in linkage disequilibrium with the variant under study, or by population stratification. Furthermore, pleiotropy of effect of a genetic variant may result in null associations, as may canalisation of genetic effects. If correctly conducted and carefully interpreted, Mendelian randomization studies can provide useful evidence to support or reject causal hypotheses linking environmental exposures to common diseases.  相似文献   

19.
The multifactorial process of carcinogenesis involves mutations in oncogenes, or tumor suppressor genes, as well as the influence of environmental etiological factors. Common DNA polymorphisms in low penetrance genes have emerged as genetic factors that seem to modulate an individual’s susceptibility to malignancy. Genetic studies, which lead to a true association, are expected to increase understanding of the pathogenesis of each malignancy and to be a powerful tool for prevention and prognosis in the future. Here, we review the findings of genetic association studies of gene polymorphisms in gynecologic cancer with special reference to glutathione-S-transferase, FAS/CD95 and p53 genes including our recent research results.  相似文献   

20.
Many neuropsychiatric disorders exhibit differences in prevalence, age of onset, symptoms or course of illness between males and females. For the most part, the origins of these differences are not well understood. In this article, we provide an overview of sex differences in psychiatric disorders including autism spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety, depression, alcohol and substance abuse, schizophrenia, eating disorders and risk of suicide. We discuss both genetic and nongenetic mechanisms that have been hypothesized to underlie these differences, including ascertainment bias, environmental stressors, X‐ or Y‐linked risk loci, and differential liability thresholds in males and females. We then review the use of twin, family and genome‐wide association approaches to study potential genetic mechanisms of sex differences and the extent to which these designs have been employed in studies of psychiatric disorders. We describe the utility of genetic epidemiologic study designs, including classical twin and family studies, large‐scale studies of population registries, derived recurrence risks, and molecular genetic analyses of genome‐wide variation that may enhance our understanding sex differences in neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号