首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Green  G Guy  J B Moore 《Life sciences》1977,20(7):1157-1162
Human lung tissue contains phosphodiesterase enzymes capable of hydrolyzing both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP). The cyclic AMP enzyme exhibits three distinct binding affinities for its substrate (apparent Km = 0.4μM, 3μM, and 40μM) while the cyclic GMP enzyme reveals only two affinities (Km = 5μM and 40μM). The pH optima for the cyclic AMP and cyclic GMP phosphodiesterase are similar (pH 7.6–7.8). Both are inhibited by known inhibitors of phosphodiesterase activity (aminophylline, caffeine, and 3-isobutyl-1-methylxanthine). The divalent cations Mg2+ and Mn2+ stimulate cyclic AMP phosphodiesterase activity (in the absence of Mg2+) while Ca2+, Ni2+, and Cu2+ inhibit the enzyme. Histamine and imidazole slightly stimulate cyclic AMP hydrolytic activity. Thus, human lung tissue does contain multiple forms of both the cyclic AMP and cyclic GMP phosphodiesterase which are influenced by a variety of effectors.  相似文献   

2.
DEAE-cellulose chromatography, in the presence and absence of Ca2+, of the 16,000g supernatant from bovine carotid artery smooth muscle has been used to separate four different types of cyclic nucleotide phosphodiesterase (3′:5′-cyclic-nucleotide 5′-nucleotidohydrolase, EC 3.1.4.17) activity, designated types A, B, C, and D. Type A is a high affinity, cyclic AMP-specific form of phosphodiesterase (Km = 1.6 μM) and elutes at relatively high ionic strength. Type B is a high affinity (Km = 2 μM), cyclic GMP-specific form which elutes at low ionic strength. Type C is a mixed substrate form, displaying anomalous kinetics for the hydrolysis of both cyclic AMP and cyclic GMP. It elutes from DEAE-cellulose at an ionic strength intermediate to that of types A and B. Type D is also a mixed substrate form of phosphodiesterase. However, its elution pattern from DEAE-cellulose differs, depending on whether Ca2+ is present or not, suggesting a Ca2+-dependent interaction between this enzyme form and the acidic Ca2+-dependent regulator protein (CDR). The hydrolytic activity of type D is stimulated by CDR, and activation requires the simultaneous presence of Ca2+ and CDR. Kinetic analysis of cyclic AMP hydrolysis by type D gives a linear double reciprocal plot; activation has no effect on the Km but increases the velocity approximately sixfold. Activation of cyclic GMP hydrolysis apparently affects both the Km and V. At all concentrations tested, the degree of activation is higher with cyclic AMP than with cyclic GMP. It is suggested that while the activable form of phosphodiesterase may play a relatively minor role in the overall hydrolysis of cyclic nucleotides, Ca2+-dependent activation may have a more important role in regulating the level of cyclic AMP than that of cyclic GMP in vascular smooth muscle.  相似文献   

3.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been identified in homogenates of C-6 glial tumor cells. The Ca2+-dependent phosphodiesterase was resolved by ECTEOLA-cellulose chromatography into two fractions. One fraction contained a protein regulator of the enzyme which was identical to a homogeneous Ca2+-binding protein (CDR) from porcine brain by the criteria of electrophoretic migration, biological activity, heat stability, and behavior in diverse chromatographic systems. The second fraction contained deactivated enzyme (CDR-dependent phosphodiesterase) which regained full activity upon the readdition of both Ca2+ and CDR. In subcellular fractionation experiments both the CDR and the Ca2+-dependent phosphodiesterase were predominantly located in the 100,000g supernatant fraction.The apparent Km values of the phosphodiesterase for cyclic AMP (cAMP) and cyclic GMP (cGMP) were 10 and 1.2 μm, respectively, when CDR was not rate limiting. Minor increases in the apparent Km for cAMP were observed at rate-limiting concentrations of CDR. At the ratio of CDR to CDR-dependent enzyme present in the C-6 cell homogenate, half-maximal activation was conferred by 4 μm Ca2+ for the hydrolysis of 25 μm cGMP and by 8 μm Ca2+ for the hydrolysis of 25 μm cAMP. Increased ratios of CDR to CDR-dependent phosphodiesterase increased the sensitivity of the enzyme to Ca2+. The enzyme was more sensitive to CDR with cGMP as substrate than with cAMP, and more sensitive at high than at low cyclic nucleotide substrate concentrations. The quantity of enzyme in the assay also influenced the amount of CDR required for half-maximal activation.  相似文献   

4.
Cyclic nucleotide phosphodiesterase activity of porcine cerebral cortical extracts was measured with 0.1–100 μM-cyclic AMP and cyclic GMP and found to be dependent on both Ca2+ and added cyclic nucleotides. With decreasing substrate concentration activity with cyclic GMP became more dependent on Ca2+ whereas hydrolysis of cyclic AMP became less dependent. Cyclic GMP at 3 μM stimulated the hydrolysis of 0.1–10μM-cyclic AMP in the absence of Ca2+ (< 10-10M) but inhibited activity with 200 μM-Ca2+ present. This differential, substrate- and Ca2+-dependent regulation was attributed to the presence of at least two types of phosphodiesterase distinguishable by DEAE-column chromatography. In the absence of Ca2+, activity with 1 μM-cyclic GMP eluted in one minor peak followed by two major peaks, D-I and D-II. Activity with 1 μM-cyclic AMP eluted almost entirely in D-II. Hydrolysis of cyclic AMP in D-II was activated by cyclic GMP. With added Ca2+ plus a Ca2+-dependent regulator (CDR), activity with 1 μM-cyclic GMP was markedly increased and eluted entirely at D-I. Total activity with 1 μM-cyclic AMP was only moderately increased and eluted as D-I with a shoulder at D-II. Elution profiles with 100 μM-substrate were relatively independent of substrate, with D-I predominant with Ca2+·CDR present and D-II predominant in its absence. Kinetic analysis of rechromatographed D-I showed a 20- to 40-fold activation by Ca2+·CDR that was largely due to an increase in Vmax, with only 50% decreases in Km Both substrates competitively inhibited hydrolysis of the other with Ki values equal to their respective Km values (1.7 μM for cyclic GMP and 48 μM for cyclic AMP with Ca2+-CDR present). Studies with theophylline and trifluoperazine indicate differential, substrate-dependent inhibitions of both enzymes. These findings demonstrate that phosphodiesterase activity in neural tissue is subject to regulation by Ca2+, cyclic GMP, and inhibitors in a complex, substrate-specific and concentration-dependent manner.  相似文献   

5.
1,N6-etheno-2-aza-adenosine 3′,5′-monophosphate (cyclic 2-aza-?-AMP) has been shown to be a sensitive and an efficient substrate for the assay of cyclic-nucleotide phosphodiesterase. The relative activity is 75% compared to cyclic AMP. Two Km values of 503 and 15 μm were observed with the beef heart enzyme.  相似文献   

6.
The hormonal control of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity has been studied by using as a model the isoproterenol stimulation of cyclic AMP phosphodiesterase activity in C6 glioma cells. A 2-fold increase in cyclic AMP phosphodiesterase specific activity was observed in homogenates of isoproterenol-treated cells relative to control. This increase reached a maximum 3 h after addition of isoproterenol, was selective for cyclic AMP hydrolysis, was reproduced by incubation with 8-Br cyclic AMP but not with 8-Br cyclic GMP and was limited to the soluble enzyme activity. The presence of 0.1 mM EGTA did not alter the magnitude of the increase in phosphodiesterase activity. Moreover, the calmodulin content in the cell extracts was not changed after isoproterernol. DEASE-Sephacel chromatography of the 100 000×g supernatant resolved two peaks of phosphodiesterase activity. The first peak hydrolyzed both cyclic nucleotides and was activated by Ca2+ and purified calmodulin. The second peak was specific for cyclic AMP but it was Ca2+- and calmodulin-insensitive. Isoproterenol selectively increased the specific activity of the second peak. Kinetic analysis of the cyclic AMP hydrolysis by the induced enzyme reveled a non-linear Hofstee plot with apparent Km values of 2–5 μM. Cyclic GMP was not hydrolyzed by this enzyme in the absence or presence of calmodulin and failed to affect the kinetics of the hydrolysis of cyclic AMP. Gel filtration chromatography of the induced DEASE-Sephacel peak resolved a single peak of enzyme activity with an apparent molecular weight of 54 000.  相似文献   

7.
(i) Three forms of cyclic AMP phosphodiesterases (3′,5′-cyclic AMP 5′-nucleotidohydrolase, EC 3.1.4.17), F1, F2-I and F2-II, were partially purified from the soluble fraction of rat pancreas in the presence of excess protease inhibitors by DEAE-cellulose column chromatography and gel filtration and were characterized. (ii) F2-II, which was purified 31-fold, exhibited a single peak of activity on both polyacrylamide-gel electrophoresis and isoelectric focusing. The enzyme had a molecular weight of about 70,000, an isoelectric point of 3.9, and an optimal pH around 8.5 and required Mg2+ or Mn2+ but not Ca2+ for activity. The Km values of this enzyme for cyclic AMP and cyclic GMP were 1 and 50 μm, respectively, while V values of this enzyme for cyclic AMP and cyclic GMP were 36.1 and 12.6 nmol min?1 (mg of protein)?1, respectively. Cyclic GMP competitively inhibited hydrolysis of cyclic AMP by this enzyme. Ro20-1724 [4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone] also inhibited hydrolysis of cyclic AMP competitively, with a Ki value of 1 μm. (iii) Fraction F1, which was purified 10-fold, had a molecular weight of more than 500,000 and required Mg2+ for activity. Its Km values for cyclic AMP were 1 and 5 μm. Its Km value for cyclic GMP was 45 μm. Fraction F2-I, which was purified 26-fold, had a molecular weight of about 70,000. The ratio of the initial velocity of hydrolysis of cyclic GMP to that of cyclic AMP was 0.5 at a substrate concentration of 1 μm.  相似文献   

8.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

9.
Phosphatidyl inositol and lysophosphatidyl choline have been identified as activators of a partially purified brain cyclic nucleotide phosphodiesterase previously shown to be regulated in vitro by Ca2+ and a Ca2+-binding protein. Microgram quantities of either phospholipid produced a linear, immediate and reversible activation of the enzyme in the absence of Ca2+ and the Ca2+-dependent regulator (CDR). Fatty acids were also found to activate the phosphodiesterase to varying degrees, with oleic acid being the most effective. Phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and lysophosphatidyl ethanolamine were not effective as activators. Only sodium dodecyl sulfate, of a variety of nonionic, cationic, and anionic detergents tested, activated the phosphodiesterase. Sodium dodecyl sulfate produced a modest degree of activation over a narrow concentration range, followed by enzyme denaturation at higher concentrations.The interaction of the phosphodiesterase with the phospholipid activators has been compared to its interaction with the Ca2+·CDR complex. Both Ca2+·CDR and lysophosphatidyl choline decreased the thermal stability of the enzyme to a similar extent. The apparent Km of the lysophosphatidyl choline-dependent phosphodiesterase activity was approximately 30 μm with guanosine-3′,5′-monophosphate (cGMP) as substrate and 1 mm with adenosine-3′,5′-monophosphate (cAMP) as substrate. With increasing lysophosphatidyl choline concentration, the apparent Km for each nucleotide remained unchanged while the V increased. The apparent Kd for Mg2+ of the lysophosphatidyl choline-dependent phosphodiesterase activity was approximately 3 μm and was unaffected by lysophosphatidyl choline concentration. Activation of the phosphodiesterase by lysophosphatidyl choline was characterized by a high degree of positive cooperativity, exhibiting a Hill coefficient of 3.8. Fluphenazine was a competitive inhibitor of both Ca2+·CDR and lysophosphatidyl choline activation of the enzyme.  相似文献   

10.
Crude preparations of cyclic adenosine 3′, 5′-monophosphate phosphodiesterase were activated 1.5 to 2 fold by incubation with ATP, Mg2+ and cyclic AMP in a reaction which was both, time and temperature dependent. Cyclic AMP phosphodiesterase remained in an activated state upon filtration of the enzymatic preparation through Sephadex G-25 and ion-exchange chromatography. Activation of the enzyme in the presence of [γ 32P]ATP resulted in a significant amount of [32P] protein-bound radioactivity. Reversible deactivation of cyclic AMP phosphodiesterase was enhanced by Mg2+ and was accompanied by the release of [32P] protein bound radioactivity. The evidence is consistent with a mechanism for controlling cyclic AMP phosphodiesterase through phosphorylation-dephosphorylation sequence.  相似文献   

11.
The cyclic nucleotide phosphodiesterases in crude homogenate, soluble material, and particulate preparations of adult Drosophila melanogaster flies, hydrolyze cyclic AMP with nonlinear kinetics. Cyclic GMP is hydrolyzed by the phosphodiesterases in crude homogenate and soluble material with linear kinetics. Physical separation techniques of gel filtration, velocity sedimentation, and ion-exchange chromatography reveal that Drosophila soluble fraction contains two major forms of cyclic nucleotide phosphodiesterase. Form I hydrolyzes both cyclic AMP and cyclic GMP. Inhibition experiments suggest that the hydrolysis of both cyclic nucleotides by Form I occurs at a single active site. The Km's for hydrolysis of both substrates are about 4 μm. This form has a molecular weight of about 168,000 as estimated by gel nitration. Form II cyclic nucleotide phosphodiesterase is specific for cyclic AMP as substrate. Gel filtration indicates that this form has a molecular weight of about 68,000. The Km for cyclic AMP is about 2 μm.  相似文献   

12.
Investigations were carried out on two DEAE-cellulose columnresolvable Ca2+-dependent nucleotide 3′:5′-phosphodiesterases from human aorta. An extract from human aorta when chromatographed on DEAE-cellulose yielded five active cyclic nucleotide 3′:5′-phosphodiesterase fractions designated as F I, F II, F III, F IV, and F V and these fractions eluted at about 0.02, 0.08, 0.18, 0.28, and 0.38 M sodium acetate. F 111 and F IV were found to be activated by a protein modulator and free fatty acids. The two Ca2+-dependent cyclic nucleotide phosphodiesterases (F III and FIV) were clearly separated by rechromatography on DEAE-cellulose column and were found to hydrolyze guanosine 3′:5′-monophosphate (cyclic GMP) preferentially. Fatty acids as well as a protein modulator increased the maximum velocity of one form (F III) without affecting the Km values and decreased the Km values of the other (F IV) without changing maximum velocity. The extent of maximum stimulation by behenic acid (C22) and a protein modulator was similar at optimal conditions. Fatty acids did not require calcium for stimulation of the phosphodiesterases. Stimulating activity diminished as the hydrocarbon chain length of the fatty acid was shortened or when more than two unsaturated bonds were introduced. Behenic acid (C22) and eruic acid (C22:1) were the most potent stimulators among the saturated or unsaturated fatty acids tested. The other DEAE-cellulose-resolvable aortic phosphodiesterase forms (F I, FII, and F V) were neither activated by the protein modulator nor stimulated significantly by fatty acids.  相似文献   

13.
Both cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase were recovered mainly from the supernatant fractions of guinea-pig pancreas, but a higher proportion of the activity of the former was associated with the pellet fractions. The activities in the supernatant were not separated by gel filtration, but were clearly separated by subsequent chromatography on an anion-exchange resin. The activities of cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase had high-affinity (Km 6.5±1.1μm and 31.9±3.9μm respectively) and low-affinity (Km 0.56±0.05mm and 0.32±0.03mm respectively) components. The activity of neither enzyme was affected by the pancreatic secretogens, cholecystokinin-pancreozymin, secretin and carbachol. Removal of ions by gel filtration resulted in a marked reduction in cyclic nucleotide phosphodiesterase activity, which could be restored by addition of Mg2+. Mn2+ (3mm) was as effective as Mg2+ (3mm) in the case of cyclic AMP phosphodiesterase, but was less than half as effective in the case of cyclic GMP phosphodiesterase. The metal-ion chelators, EDTA and EGTA, also decreased activity. Ca2+ (1mm) did not affect the activity of cyclic nucleotide phosphodiesterase when the concentration of Mg2+ was 3mm. At concentrations of Mg2+ between 0.1 and 1mm, 1mm-Ca2+ was activatory, and at concentrations of Mg2+ below 0.1mm, 1mm-Ca2+ was inhibitory. These results are discussed in terms of the possible significance of cyclic nucleotide phosphodiesterase in the physiological control of cyclic nucleotide concentrations during stimulus–secretion coupling.  相似文献   

14.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was mimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phosphodiesterase activity.  相似文献   

15.
The cyclic adenosine 3′,5′-monophosphate (cyclic AMP) phosphodiesterase from human leukemic lymphocytes differes from the normal cell enzyme in having a much higher activity and a loss of inhibition by cyclic guanosine 3′,5′-monophosphate (cyclic GMP). In an effort to determine the mechanism of these alterations, we have studied this enzyme in a model system, lectin-stimulated normal human lymphocytes. Following stimulation of cells with concanavalin A (con A) the enzyme activity gradually becomes altered, until it fully resembles the phosphodiesterase found in leukemic lymphocytes. The changes in the enzyme parallel cell proliferation as measured by increases in thymidine incorporation into DNA. The addition of a guanylate cyclase inhibitor preparation from the bitter melon prevents both the changes in the phosphodiesterase and the thymidine incorporation into DNA. This blockage can be partially reversed by addition of 8-bromo cyclic guanosine 3′,5′-monophosphate (8-bromo cyclic GMP) to the con A-stimulated normal lymphocytes. These results indicate a possible role of cyclic GMP in a growth related alteration of cyclic AMP phosphodiesterase.  相似文献   

16.
Phosphodiesterase activities of horse (and dog) thyroid soluble fraction were compared with either cyclic AMP (adenosine 3':3'-monophosphate) or cyclic GMP (guanosine 3':5'-monophosphate) as substrate. Optimal activity for cyclic AMP hydrolysis was observed at pH 8, and at pH 7.6 for cyclic GMP. Increasing concentrations of ethyleneglycol bis(2-aminoethyl)-N,N'-tetraacetic acid inhibited both phosphodiesterase activities; in the presence of exogenous Ca2+, this effect was shifted to higher concentrations of the chelator. In a dialysed supernatant preparation, Ca2+ had no significant stimulatory effect, but both Mg2+ and Mn2+ increased cyclic nucleotides breakdown. Mn2+ promoted the hydrolysis of cyclic AMP more effectively than that of cyclic GMP. For both substrates, substrate velocity curves exhibited a two-slope pattern in a Hofstee plot. Cyclic GMP stimulated cyclic AMP hydrolysis, both nucleotides being at micromolar concentrations. Conversely, at no concentration had cyclic AMP any stimulatory effect on cyclic GMP hydrolysis. 1-Methyl-3-isobutylxanthine and theophylline blocked the activation by cyclic GMP of cyclic GMP of cyclic AMP hydrolysis, whereas Ro 20-1724 (4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone), a non-methylxanthine inhibitor of phosphodiesterases, did not alter this effect. In dog thyroid slices, carbamoylcholine, which promotes an accumulation of cyclic GMP, inhibits the thyrotropin-induced increase in cyclic AMP. This inhibitory effect of carbamoylcholine was blocked by theophylline and 1-methyl-3-isobutylxanthine, but not by Ro 20-1724. It is suggested that the cholinergic inhibitory effect on cyclic AMP accumulation is mediated by cyclic GMP, through a direct activation of phosphodiesterase activity.  相似文献   

17.
One of the transformation products of tritiated cyclic GMP in frog heart tissue homogenate was identified with cyclic AMP. The purified product met all criteria tested for: solubility in ZnCO3, behavior on various ion-exchangers and sensitivity to cyclic nucleotide phosphodiesterase. Our findings may provide insight into the understanding of heart pacemaker activity.  相似文献   

18.
Cyclic adenosine 3′:5′-monophosphate (cyclic AMP) and cyclic guanosine 3′:5′-monophosphate (cyclic GMP) have been determined at half-hourly intervals throughout the mitotic cycle of Physarum polycephalum. Cyclic AMP was constant at 1pmole/mg protein throughout except for a transient peak of 17pmoles/mg protein in the last quarter of G2. Cyclic GMP was more variable (2–4pmole/mg protein) rising to 9.5pmole/mg protein during the 3 hour S period and to 7pmole/mg protein during the last hour of G2. The significance of these changes is discussed.  相似文献   

19.
High-affinity cyclic AMP phosphodiesterase purified to homogeneity from dog kidney was studied with respect to its stability, its catalytic and kinetic properties, and its sensitivity to pharmacological agents. The enzyme was shown to rapidly lose activity upon dilution to low protein concentrations in aqueous media, but this activity loss was largely prevented by the presence of bovine serum albumin or ethylene glycol. Similarly, maximum activity required bovine serum albumin to be present during incubation for activity analysis. Enzyme activity required a divalent cation; Mg2+, Mn2+, and Co2+ each supported activity, but highest activity was obtained with Mg2. The temperature optimum ranged from 30 to 45 °C and depended on substrate concentration; the Ea = 10,600 cal/mol. The pH optimum of the enzyme was broad, with a maximum from pH 8.0 to 9.5. The enzyme exhibits linear Michaelis-Menton kinetics for hydrolysis of cyclic AMP at all substrate concentrations tested and for hydrolysis of cyclic GMP at > 20 μm. The Km for cyclic AMP hydrolysis was 2 μm, and that for cyclic GMP hydrolysis was 312 μm. The Ki values for the competitive inhibition of hydrolysis of each substrate by the other were similar to their Km values suggesting a single active site. Cyclic AMP hydrolysis was weakly inhibited by cyclic GMP, cyclic IMP, adenine, and adenosine, but was not inhibited by the mono-, di, or trinucleotides of adenosine, guanosine, or inosine. Activity was competitively inhibited with Ki values in the micromolar range by drugs representative of methylxanthines, isoquinolines, pyrazolopyridines, imidazolidinones, triazolopyrimidines, pyridylethylenediamines, phenothiazines, and calcium antagonists. The results are discussed with reference to the similarities and differences between high- and low-affinity phosphodiesterase forms.  相似文献   

20.
Some characteristics of the cyclic 3′,5′-nucleotide phosphodiesterase (phosphodiesterase) activity associated with the synaptosomal plasma membrane (synaptic membrane) and the synaptic junction fractions of rat brain are reported. Kinetic analysis revealed that only one type of phosphodiesterase activity, with a Km of 2 · 10?4 M for cyclic AMP, is associated with both fractions. The specific activities of the phosphodiesterase in synaptic membranes and synaptic junctions have been estimated at 23.4 nmol/min per mg protein and 22.5 nmol/min per mg protein, respectively. The synaptic junction-associated activity undergoes a 30% stimulation by Ca2+ while no Ca2+ sensitivity of the synaptic membrane-associated activity could be detected. Cytochemical studies performed on the synaptic membrane fraction demonstrated a predominant localization of phosphodiesterase activity over postsynaptic densities, while dense deposits were sometimes observed over the synaptic cleft region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号