首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Activation of liver pyruvate kinase by fructose 1,6-diphosphate.   总被引:2,自引:0,他引:2  
  相似文献   

2.
  • 1.1. For the determination of relationship between FDP and ATP in the rat liver pyruvate kinase regulation, kinelic studies have been carried out at several ATP and FDP concentrations.
  • 2.2. The results obtained on FDP activation show a great cooperativity for FDP saturation with a Hill coefficient of h = 2.79.
  • 3.3. Kinetic studies on ATP inhibition also show a great cooperativity for ATP saturation (h = 2.84) at high FDP concentrations.
  • 4.4. These results may contribute to explain the regulation of rat liver pyruvate kinase accounting for the activity of this enzyme at high FDP concentrations modulated by small changes in ATP concentrations.
  相似文献   

3.
4.
The paper reports a study of the kinetics of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by yeast pyruvate kinase when activated by fructose 1,6-diphosphate and K(+). The experimental results indicate that the reaction mechanism is of the Ordered Tri Bi type with the substrates binding in the order phosphoenolpyruvate, ADP and Mg(2+). Direct phosphoryl transfer takes place in the quaternary complex, with pyruvate released before MgATP. A dead-end enzyme-pyruvate complex is also indicated. Values have been determined for the Michaelis, dissociation and inhibition constants of the reaction. Several of the rate constants involved have also been evaluated.  相似文献   

5.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

6.
The effect of fructose on the induction of L-type pyruvate kinase mRNA in diabetic rat liver was studied by using a cloned cDNA probe. Fructose feeding resulted in a 5- to 6-fold increase in the L-type enzyme mRNA level after 1 to 3 days. These changes were approximately proportional to the changes in the level of translatable mRNA of this enzyme. A significant increase in total cellular L-type enzyme mRNA level was observed within 2 h after fructose feeding and the level reached a maximum after 8 h. Dietary glycerol also markedly increased the L-type mRNA level. These alterations were essentially due to the changes in the cytosolic mRNA. Northern blot analysis of total cellular RNA revealed that two L-type enzyme mRNA species with molecular sizes of 2.1 and 3.6 kilobases were proportionally increased during the fructose induction. The two mRNA forms were found in immunopurified L-type enzyme mRNA and directed synthesis of the L-type subunit in vitro; they are therefore functional mature forms. In contrast, analysis of nuclear RNA showed five putative precursor RNA species for the enzyme, up to 9.4 kilobases in length, in the liver of fructose-fed rats, while no band of the RNA species was found in the nuclei of control liver. The changes in the number of bands of these RNA species and their intensities after fructose feeding preceded the changes in the level of total cellular L-type enzyme mRNA sequences. These results indicate that dietary fructose causes a rapid increase in the level of L-type pyruvate kinase mRNA sequences by acting at the nuclear level.  相似文献   

7.
Preparation of the L form of rabbit liver pyruvate kinase (EC 2.7.1.40) in the presence of fructose 1,6-diphosphate yielded an enzyme which was kinetically identical with the M or muscle-type form of pyruvate kinase found in liver. Chromatographic and dialysis studies of this complex showed that most of the fructose 1,6-diphosphate molecules were loosely bound to the enzyme, but dilution-dissociation studies and binding experiments established that there was a high initial affinity between the enzyme and fructose 1,6-diphosphate (K(assoc.)=2.3x10(9)), and that binding of the loosely bound fructose 1,6-diphosphate was concentration-dependent and a necessary condition to overcome the co-operative interaction observed with the homotropic effector phosphoenolpyruvate. Preparation of the liver enzyme in the absence of EDTA did not yield a predominantly M form of the enzyme, and incubation of the M form in the presence of EDTA did not convert it into the L form, but resulted in inhibition of enzyme activity. Immunological studies confirmed that the L and M forms in liver were distinct, and that preparation of the L form in the presence of fructose 1,6-diphosphate did not produce an enzyme antigenically different from the L form prepared in the absence of this heterotropic effector.  相似文献   

8.
9.
10.
Treatment of rat liver-type pyruvate kinase with rabbit liver cathepsin B at pH 7.0 caused loss of activity in the standard assay with 0.6 mM of phosphoenolpyruvate. The modified enzyme exhibited about 10% of the original activity when assayed with 2.0 mM of the substrate. No detectable change in the subunit molecular weight of the enzyme occurred during inactivation. On addition of 4 microM fructose 1,6-bisphosphate the activity of the treated enzyme was restored to that of the original enzyme. Limited proteolysis of the enzyme by cathepsin B appears to enhance the requirement for the positive effector, fructose 1,6-bisphosphate.  相似文献   

11.
A lag is observed before the steady state during pyruvate reduction catalysed by lactate dehydrogenase from Streptococcus lactis. The lag is abolished by preincubation of enzyme with the activator fructose 1,6-bisphosphate before mixing with the substrates. The rate constants for the lag phase showed a linear dependence on fructose-1,6-bisphosphate concentration, with a second-order rate constant of 2.0 X 10(4) M-1 s-1, but were independent of enzyme concentration. Binding of fructose 1,6-bisphosphate produces a decrease in the protein fluorescence of the enzyme. The second-order rate constant for the fluorescence change is twice that for the lag in pyruvate reduction. The results suggest that binding of fructose 1,6-bisphosphate induces a conformational change in the enzyme, producing a form with reduced protein fluorescence and increased activity towards pyruvate reduction.  相似文献   

12.
13.
Purified liver fructose 1,6-bisphosphatase exhibits different forms upon isoelectric focusing. The enzyme focused at pH 5.75, 5.60, and 5.44. Treatment of the enzyme preparation with the catalytic subunit of cAMP-dependent protein kinase and ATP altered the isoelectric focusing profile such that the bands at 5.75 and 5.60 were diminished, the band at 5.44 increased, and two new bands appeared at 5.30, and 5.18. Fructose 1,6-bisphosphatase may be present in rat liver in different forms, one of which is phosphorylated as the enzyme is isolated.  相似文献   

14.
The paper reports a study of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by pig liver pyruvate kinase when activated by fructose diphosphate and K(+). The experimental results are consistent with two non-sequential mechanisms in which the substrates and products of the reaction are phosphoenolpyruvate, ADP, Mg(2+), pyruvate and MgATP. Pyruvate release occurs before ADP binding. Two Mg(2+) ions are involved, though the two Mg(2+)-binding sites cannot be occupied simultaneously. An isomerized enzyme complex forms before release of MgATP. Values were determined for the Michaelis constants of the reaction. Apparent MgATP inhibition constants are also given.  相似文献   

15.
1. Dietary excess histidine caused an increase in the total activity of fructose 1,6-bisphosphatase, and a decrease in 6-phosphofructokinase in the liver. 2. The hepatic concentrations of free histidine and lysine were higher in rats fed a histidine-excess diet. 3. The addition of histidine, lysine or arginine to the assay mixture for fructose 1,6-bisphosphatase resulted in a significant increase in its activity. The 6-phosphofructokinase activity in the liver was not enhanced by the addition of histidine to the assay mixture.  相似文献   

16.
1. Pyruvate kinase purified from flounder liver in two forms, i.e. PKI and PKII, is activated by fructose 1,6 diphosphate. 2. Two or more binding sites for FDP are demonstrated for PKII, the binding to which is influenced by the levels of substrates. 3. FDP reduces or abolishes the cooperative effect of PEP. 4. FDP increases the maximal activity. 5. The inhibition observed at higher levels of ADP is not abolished by FDP.  相似文献   

17.
Fructose-1,6-bisphosphatase from rat liver was phosphorylated with cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Brief exposure of the 32P-labeled enzyme to trypsin removed all radioactivity from the enzyme core and produced a single-labeled peptide. The partial sequence of the 17-amino acid peptide was found to be Ser-Arg-Pro-Ser(P)-Leu-Pro-Leu-Pro-(Ser2, Glx2, Pro2, Leu, Arg2). The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of native fructose bisphosphatase were compared with those of rat liver type L pyruvate kinase where the sequence around the phosphoserine is known (Arg-Arg-Ala-Ser(P)-Val; Hjelmquist, G., Anderson, J., Edlund, B., and Engstrom, L. (1974) Biochem. Biophys. Res. Commun. 61, 559-563). The Km for pyruvate kinase (17 microM) was less than that for fructose bisphosphatase (58 microM); the Vmax was about 3-fold greater with pyruvate kinase as substrate. The relationship between the rates of phosphorylation of these native substrates and the amino acid sequences surrounding the phosphorylated sites is discussed.  相似文献   

18.
We determined the annual change in the intermediary metabolism of glucose through the variations of specific activity of fructose 1,6-bisphosphatase (FBPase), alanine aminotransferase (AAT) and pyruvate kinase (PK). Fish (average mass 330 g) were kept in cages under natural conditions of temperature and photoperiod and fed with a commercial diet. FBPase, AAT and PK increased their activity in June in different ways: AAT and PK increased V(max), and FBPase increased the velocity at subsaturating substrate concentrations, changing K(m). The reproduction period modified the annual tendency of changes in the enzyme activities in both parameters, K(m) and V(max), except for K(m) of PK which shows a circa-annual rhythm. No relation between the changes of enzymes activity and photoperiod or temperature has been found in this study, except for K(m) of AAT which presents a positive correlation with photoperiod and a negative correlation with temperature.  相似文献   

19.
20.
The allosteric fructose 1,6-bisphosphate-activated pyruvate kinase from Escherichia coli was modified with pyridoxal 5'-phosphate in the presence and in the absence of phosphoenolpyruvate, fructose 1,6-bisphosphate, MgADP and MgATP. In all cases a time-dependent inactivation was observed, but the rate and the extent of inactivation varied according to the conditions used. The kinetic properties of the partially inactivated enzyme were differently modified by addition of substrates and effectors to the modification mixture, the parameters mostly affected being those concerning fructose 1,6-bisphosphate. Tryptic peptides obtained from fully inactivated pyruvate kinase in the different conditions have been separated. In all conditions three main 6-pyridoxyllysine-containing peptides were present, the amounts of which showed significant differences in the presence of fructose 1,6-bisphosphate and MgADP. The function of the labelled peptides and the evidence supporting the physical existence of different conformational states are discussed. The main conclusion concerns the involvement of one of the above peptides in the binding of the allosteric effector fructose 1,6-bisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号