首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kinetic properties of rat liver pyruvate kinase type I at pH7.5 and 6.5 were studied with physiological ranges of substrates, modifiers and Mg(2+) concentrations at increasing enzyme concentrations, including the estimated cellular concentrations (approx. 0.1mg/ml). Enzyme properties appear unaffected by increased enzyme concentration if phosphoenolpyruvate, fructose 1,6-diphosphate and inhibitors are incubated with enzyme before starting the reaction with ADP. Our data suggest that minimum cellular concentrations of MgATP and l-alanine provide virtually complete inhibition of pyruvate kinase I at pH7.5. The most likely cellular control of existing pyruvate kinase I results from the strong restoration of enzyme activity by the small physiological amounts of fructose 1,6-diphosphate. Decreasing the pH to 6.5 also restores pyruvate kinase activity, but to only about one-third of its activity in the presence of fructose 1,6-diphosphate. Neither pyruvate nor 2-phosphoglycerate at cellular concentrations inhibit the enzyme significantly.  相似文献   

2.
1. The pyruvate kinases of the desert locust fat body and flight muscle were partially purified by ammonium sulphate fractionation. 2. The fat-body enzyme is allosterically activated by very low (1mum) concentrations of fructose 1,6-diphosphate, whereas the flight-muscle enzyme is unaffected by this metabolite at physiological pH. 3. Flight-muscle pyruvate kinase is activated by preincubation at 25 degrees for 5min., whereas the fat-body enzyme is unaffected by such treatment. 4. Both enzymes require 1-2mm-ADP for maximal activity and are inhibited at higher concentrations. With the fat-body enzyme inhibition by ADP is prevented by the presence of fructose 1,6-diphosphate. 5. Both enzymes are inhibited by ATP, half-maximal inhibition occurring at about 5mm-ATP. With the fat-body enzyme ATP inhibition can be reversed by fructose 1,6-diphosphate. 6. The fat-body enzyme exhibits maximal activity at about pH7.2 and the activity decreases rapidly above this pH. This inactivation at high pH is not observed in the presence of fructose 1,6-diphosphate, i.e. maximum stimulating effects of fructose 1,6-diphosphate are observed at high pH. The flight-muscle enzyme exhibits two optima, one at about pH7.2 as with the fat-body enzyme and the other at about pH8.5. Stimulation of the enzyme activity by fructose 1,6-diphosphate was observed at pH8.5 and above.  相似文献   

3.
After 5 h of treatment with glucagon, liver L-type pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase; EC 2.7.1.40) showed a significant decrease of K0.5 and the Hill coefficient (nH) in the absence of fructose 1,6-diphosphate. However, in the presence of fructose 1,6-diphosphate, liver enzymes from treated rats showed a slight decrease of K0.5 but nH remained unchanged. In both circumstances, no changes of Vmax were observed after treatment. These changes in the kinetic properties of liver L-type pyruvate kinase are consistent with the dephosphorylation of the enzyme caused by insulin release in response to treatment with glucagon.  相似文献   

4.
Pig spleen phosphofructokinase has been purified 800-fold with a yield of 17%. Two isoenzymes that appear to be kinetically identical can be separated by DEAE-cellulose column chromatography. In common with the enzyme from other mammalian sources, the spleen enzyme has a pH optimum of 8.2. At pH 7.0 it displays sigmoidal kinetics with respect to fructose 6-phosphate concentration but its co-operative behaviour is very dependent on pH, protein concentration and the concentration of MgATP. MgGTP and MgITP can replace MgATP as phosphate donors but, unlike MgATP, these nucleotides do not cause significant inhibition. Mn2+ and Co2+ (as the metal ion-ATP complexes) act as cofactors and in the free form are far more inhibitory than free Mg2+. The spleen enzyme responds to a wide variety of potential effector molecules: ADP, AMP, cyclic AMP, aspartate, NH4+, fructose 6-phosphate, fructose 1,6-diphosphate and Pi all act as either activators or protectors, whereas Mg-ATP, Mg2+, citrate, phosphoenol-pyruvate and the phosphoglucerates are inhibitors.  相似文献   

5.
1. Ox heart phosphofructokinase catalyses isotope-exchange reactions at pH6.7 between ADP and ATP, and between fructose 6-phosphate and fructose 1,6-diphosphate, the latter reaction being absolutely dependent on the presence of the magnesium complex of ADP. 2. The reaction kinetics are hyperbolic with respect to substrate concentration for both exchange reactions (within the experimental error). 3. The influence of pH, AMP and citrate suggests that the fructose 6-phosphate-fructose 1,6-diphosphate exchange is subject to effector control, and is abolished by dissociation of the enzyme. 4. These results are discussed in relation to the reaction mechanism of the enzyme.  相似文献   

6.
Kinetic properties of cerebral pyruvate kinase   总被引:2,自引:1,他引:1       下载免费PDF全文
Partly purified guinea-pig brain pyruvate kinase is not activated by fructose 1,6-diphosphate and gives hyperbolic substrate-saturation curves with phosphoenolpyruvate. It is therefore different from the L-type pyruvate kinase of mammalian liver. Inhibition by MgATP(2-) was competitive for MgADP(-) but not for phosphoenolpyruvate, and the enzyme is therefore different from the M-type pyruvate kinase, which is said to be competitively inhibited by MgATP(2-) with respect to both substrates. The K(i)(MgATP(2-)) value of approx. 8mm for the brain enzyme is higher than the values (about 2mm) reported for the muscle enzyme. Stimulation of enzymic activity was observed at low (1-2mm) concentrations of MgATP(2-). Substrate kinetic constants were K(m) (MgADP(-))=0.47mm, K(m) (phosphoenolpyruvate)=0.08mm. Free Mg(2+) at very high concentrations (over 10mm) was inhibitory (K(i)=20-32mm). Neither ADP(3-) nor 5'-AMP(2-) inhibited the activity. The brain enzyme was concluded to be different from both the M-type and the L-type of other mammalian organs such as muscle and liver.  相似文献   

7.
Purified bovine hepatic fructose-1,6-diphosphatase, which exhibits maximal activity at neutral pH, is competitively inhibited by several analogs of its substrate, fructose 1,6-diphosphate. These include glucose 1,6-diphosphate (Ki = 9.4 X 10(-5) M), hexitol 1,6-diphosphate (Ki = 2.3 X 10(-4) M), and 2,5-anhydro-D-mannitol 1,6-diphosphate (Ki = 3.3 X 10(-8) M), and 2,5-anhydro-D-glucitol 1,6-diphosphate (Ki = 5.5 X 10(-7) M). The Ki values for both 2,5-anhydro-D-mannitol 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate are lower than the Km of 1.4 X 10(-6) M for fructose 1,6-diphosphate. Since 2,5-anhydro-D-mannitol 1,6-diphosphate is an analog of the beta anomer of fructose 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate is an analog of the alpha anomer, the lower Ki for the mannitol analog may indicate that the beta anomer of fructose 1,6-diphosphate, which predominates in solution, is the true substrate. The substrate analog 1,5-pentanediol diphosphate inhibits slightly (K0.5 = 5 X 10(-3) M), but 1,4-cyclohexyldiol diphosphate does not. The Ki for product inhibition by sodium phosphate is 9.4 X 10(-3) M. 2,5-Anhydro-D-mannitol 1,6-diphosphate and alpha-D-glucose 1,6-diphosphate are substrates at pH 9.0, but not at pH 6.5.  相似文献   

8.
Fructose 2,6-diphosphate and glucose 1,6-diphosphate concentrations were determined during late gestation and over the course of suckling in rat brain cortex and cerebellum. Cortex fructose 2,6-diphosphate concentration was greatest in neonatal animals and gradually declined thereafter by 25% to reach the adult level at 15 days of age. In contrast, the glucose 1,6-diphosphate concentration increased 4-fold over the same period to reach its highest level by postnatal day 15. Neither cerebellar fructose 2,6-diphosphate nor glucose 1,6-diphosphate concentrations varied significantly. Six day cortex 6-phosphofructo-1-kinase was less sensitive to inhibition by citrate than the enzyme obtained from 15 day pups, and fructose 2,6-diphosphate was better than glucose 1,6-diphosphate at relieving the inhibition imposed by citrate at either age. It is suggested that the rise in cerebral glucose use which occurs during suckling cannot be attributed to either changes in the concentrations of fructose 2,6-diphosphate or glucose 1,6-diphosphate, or the age-related differential sensitivity of 6-phosphofructo-1-kinase toward these effectors.  相似文献   

9.
The steady-state kinetics of the reaction catalysed by the bloodstream form of Trypanosoma brucei were studied at pH 6.7. In the presence of 50 mM-potassium phosphate buffer, the apparent co-operativity with respect to fructose 6-phosphate and the non-linear relationship between initial velocity and enzyme concentration, which were found when the enzyme was assayed in 50 mM-imidazole buffer [Cronin & Tipton (1985) Biochem. J. 227, 113-124], are not evident. Studies on the variations of the initial rate with changing concentrations of MgATP and fructose 6-phosphate, the product inhibition by fructose 1,6-bisphosphate and the effects of the alternative substrate ITP were consistent with an ordered reaction pathway, in which MgATP binds to the enzyme before fructose 6-phosphate, and fructose 1,6-bisphosphate is the first product to dissociate from the ternary complex.  相似文献   

10.
The light-dependent synthesis of glycolate derived from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate was studied in the intact spinach (Spinacia oleracea) chloroplasts in the absence of CO(2). Glycolate yield increased with an elevation of O(2), pH, and the concentration of the phosphorylated compound supplied. No pH optimum was observed as the pH was increased from 7.4 to 8.5. The average maximal rate of glycolate synthesis was 50 mumoles per milligram chlorophyll per hour while the highest rate observed was 92 with 2.5 mm fructose 1,6-diphosphate in 100% O(2). The highest yields of glycolate synthesized from fructose 1,6-diphosphate, ribose 5-phosphate, or glycerate 3-phosphate were 0.14, 0.24, and 0.30, respectively, on a molar basis.  相似文献   

11.
Preparation of the L form of rabbit liver pyruvate kinase (EC 2.7.1.40) in the presence of fructose 1,6-diphosphate yielded an enzyme which was kinetically identical with the M or muscle-type form of pyruvate kinase found in liver. Chromatographic and dialysis studies of this complex showed that most of the fructose 1,6-diphosphate molecules were loosely bound to the enzyme, but dilution-dissociation studies and binding experiments established that there was a high initial affinity between the enzyme and fructose 1,6-diphosphate (K(assoc.)=2.3x10(9)), and that binding of the loosely bound fructose 1,6-diphosphate was concentration-dependent and a necessary condition to overcome the co-operative interaction observed with the homotropic effector phosphoenolpyruvate. Preparation of the liver enzyme in the absence of EDTA did not yield a predominantly M form of the enzyme, and incubation of the M form in the presence of EDTA did not convert it into the L form, but resulted in inhibition of enzyme activity. Immunological studies confirmed that the L and M forms in liver were distinct, and that preparation of the L form in the presence of fructose 1,6-diphosphate did not produce an enzyme antigenically different from the L form prepared in the absence of this heterotropic effector.  相似文献   

12.
The functional changes, associated with the sequential transformation of L'4 into L4 pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) were studied. L'4 enzyme from human erythrocytes shows strong hysteretic behaviour: the initial rate of the enzyme preincubated with an unsaturating concentration of phosphoenolpyruvate is much higher than of the enzyme preincubated with ADP, at the same phosphoenolpyruvate concentration, although the "final activity" (the activity of the linear part of the reaction progress curve) was the same in both cases. This phenomenon was observed both in the presence and absence of fructose 1,6-diphosphate. High concentrations of both Mg2+free and MgATP2- diminish the difference in initial rate, between the ADP and phosphoenolpyruvate preincubated enzymes: Mg2+free by stabilizing the phosphoenolpyruvate-induced form; ATPMg2- by stabilizing the ADP-induced form. The magnitude of the difference in initial rates of the ADP-or phosphoenolpyruvate-preincubated enzyme is a function of both substrates. L4 pyruvate kinase (either from human liver or trypsin treated L'4 enzyme) does not, or to a very slight extent, show such behaviour. L'2L2 pyruvate kinase shows behaviour intermediate between L'4 and L4 enzymes. A model is proposed to describe the kinetic behaviour of L'4 and L4 enzymes.  相似文献   

13.
2-Deoxyribose 5-phosphate production through coupling of the alcoholic fermentation system of baker's yeast and deoxyriboaldolase-expressing Escherichia coli was investigated. In this process, baker's yeast generates fructose 1,6-diphosphate from glucose and inorganic phosphate, and then the E. coli convert the fructose 1,6-diphosphate into 2-deoxyribose 5-phosphate via D-glyceraldehyde 3-phosphate. Under the optimized conditions with toluene-treated yeast cells, 356 mM (121 g/l) fructose 1,6-diphosphate was produced from 1,111 mM glucose and 750 mM potassium phosphate buffer (pH 6.4) with a catalytic amount of AMP, and the reaction supernatant containing the fructose 1,6-diphosphate was used directly as substrate for 2-deoxyribose 5-phosphate production with the E. coli cells. With 178 mM enzymatically prepared fructose 1,6-diphosphate and 400 mM acetaldehyde as substrates, 246 mM (52.6 g/l) 2-deoxyribose 5-phosphate was produced. The molar yield of 2-deoxyribose 5-phosphate as to glucose through the total two step reaction was 22.1%. The 2-deoxyribose 5-phosphate produced was converted to 2-deoxyribose with a molar yield of 85% through endogenous or exogenous phosphatase activity.  相似文献   

14.
Rat brain mitochondrial hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) was solubilized by treatment of the mitochondria with glucose 6-phosphate and partly purified. The solubilized enzyme was compared with the cytosolic enzyme fraction. The solubilized and cytosolic enzymes were also compared with the enzyme bound to the mitochondrial membrane. The following observations were made. 1. There is no difference in electrophoretic mobility on cellulose-acetate between the cytosolic and the solubilized enzyme. Both fractions are hexokinase isoenzyme I. 2. There is no difference in kinetic parameters between the cytosolic or solubilized enzymes (P less than 0.001). For the cytosolic enzyme Km for glucose was 0.067 mM (S.E. = 0.024, n = 7); Km for MgATP2- was 0.42 mM (S.E. = 0.13, n = 7) and Ki,app for glucose 1,6-diphosphate was 0.084 mM (S.E. = 0.011, n = 5). For the solubilized enzyme Km for glucose was 0.071 mM (S.E. = 0.021, n = 6); Km for MgATP2- was 0.38 mM (S.E. = 0.11, n = 6) and Ki,app for glucose 1,6-diphosphate was 0.074 mM (S.E. = 0.010, n = 5). However when bound to the mitochondrial membrane, the enzyme has higher affinities for its substrates and a lower affinity for the inhibitor glucose 1,6-diphosphate. For the mitochondrial fraction Km for glucose was 0.045 mM (S.E. = 0.013, n = 7); Km for MgATP2- was 0.13 mM (S.E. = 0.02, n = 7) and Ki,app for glucose 1,6-diphosphate was 0.33 mM (S.E. = 0.03, n = 5). 3. The cytosolic and solubilized enzyme could be (re)-bound to depleted mitochondria to the same extent and with the same affinity. Limited proteolysis fully destroyed the enzyme's ability to bind to depleted mitochondria. 4. Our data support the hypothesis that soluble- and solubilizable enzyme from rat brain are one and the same enzyme, and that there is a simple equilibrium between the enzyme in these two pools.  相似文献   

15.
Wild-type glycerol kinase of Escherichia coli is inhibited by both nonphosphorylated enzyme IIIGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system and fructose 1,6-diphosphate. Mutant glycerol kinase, resistant to inhibition by fructose 1,6-diphosphate, was much less sensitive to inhibition by enzyme IIIGlc. The difference between the wild-type and mutant enzymes was even greater when inhibition was measured in the presence of both enzyme IIIGlc and fructose 1,6-diphosphate. The binding of enzyme IIIGlc to glycerol kinase required the presence of the substrate glycerol.  相似文献   

16.
1. The properties of fructose diphosphatase from skeletal muscle of the Alaskan king-crab (Paralithodes camtschatica) were examined over the physiological temperature range of the animal. 2. King-crab muscle fructose diphosphatase is first activated by Na(+) and NH(4) (+) and is then partially inhibited by these cations at concentrations higher than 10mm at 0 degrees , 8 degrees and 15 degrees C. Enzyme activity is stimulated by K(+) at 0 degrees C, but is curtailed at 8 degrees C and 15 degrees C, an effect that could render rate independent of temperature. 3. Affinity for substrate increases with decreasing temperature; below the temperature of acclimatization, K(m) for fructose 1,6-diphosphate increases, resulting in a complex U-shaped temperature-K(m) curve. 4. King-crab muscle fructose diphosphatase is inhibited by low concentrations of AMP. As with enzymes of other poikilotherms, inhibition by AMP is sensitive to temperature; the enzyme is least sensitive to inhibition by AMP near the temperature of acclimatization. 5. The affinity of fructose diphosphatase for fructose 1,6-diphosphate is enhanced by phosphoenolpyruvate, and this activation is temperature-sensitive; 0.5mm-phosphoenolpyruvate causes a sevenfold decrease in K(m) for fructose 1,6-diphosphate at 15 degrees C but a 25-fold decrease at 0 degrees C. 6. Phosphoenolpyruvate appears to decrease the affinity of king-crab muscle fructose diphosphatase for AMP at low temperature, whereas at the higher temperature it appears to enhance inhibition by AMP. Phosphoenolpyruvate was not observed to cause a reversal of inhibition of fructose diphosphatase activity by AMP. The identification of phosphoenolpyruvate as an activator of a rate-limiting step in gluconeogenesis permits the suggestion of a coupling of the controlling mechanisms of several steps in the glycolytic and gluconeogenic chains. 7. These findings suggest mechanisms for the maintenance and regulation of control of fructose diphosphatase activity in king-crab skeletal muscle at low temperature and under conditions that favour concomitant activity of phosphofructokinase.  相似文献   

17.
A method of purification of pyruvate kinase (EC 2.7.1.40) from light-grown Euglena gracilis var. bacillaris was developed which yielded an enzyme preparation purified 115-fold over crude extracts. During organelle formation, levels of pyruvate kinase in extracts prepared from cells engaged in light-induced chloroplast development do not change significantly. The enzyme has a molecular weight of approximately 240,000 and a requirement for both K+ and Mg2+. Fructose 1,6-diphosphate activates the enzyme when the concentration of phosphoenol-pyruvate is limiting; it does not activate when the concentration of ADP is limiting. ATP, citrate, and Ca2+ are inhibitors of the enzyme and inhibit the fructose 1,6-diphosphate stimulation of the enzyme activity. ATP inhibition is only partially reversed by high concentrations of fructose 1,6-diphosphate. Further reversal of inhibition can be achieved by dialysis. Ca2+-dependent inhibition can be reversed by a chelating agent but not by increased concentrations of Mg2+.  相似文献   

18.
Gibson GE  Harris BG  Cook PF 《Biochemistry》2006,45(7):2453-2460
Phosphofructokinase (PFK) catalyzes the phosphorylation of fructose 6-phosphate (F6P) to give fructose 1,6-bisphosphate (FBP) using MgATP as the phosphoryl donor. As the concentration of Mg(2+) increases above the concentration needed to generate the MgATP chelate complex, a 15-fold increase in the initial rate was observed at low MgATP. The effect of Mg(2+) is limited to V/K(MgATP), and initial rate studies indicate an equilibrium-ordered addition of Mg(2+) before MgATP. Isotope partitioning of the dPFK:MgATP complex indicates a random addition of MgATP and F6P at low Mg(2+), with the rate of release of MgATP from the central E:MgATP:F6P complex 4-fold faster than the net rate constant for catalysis. This can be contrasted with the ordered addition of MgATP prior to F6P at high Mg(2+). The addition of fructose 2,6-bisphosphate (F26P(2)) has no effect on the mechanism at low Mg(2+), with the exception of a 4-fold increase in the affinity of the enzyme for F6P. At high Mg(2+), F26P(2) causes the kinetic mechanism to become random with respect to MgATP and F6P and with MgATP released from the central complex half as fast as the net rate constant for catalysis. The latter is in agreement with previous studies [Gibson, G. E., Harris, B. G., and Cook, P. F. (1996) Biochemistry 35, 5451-5457]. The overall effect of Mg(2+) is a decrease in the rate of release of MgATP from the E:MgATP:F6P complex, independent of the concentration of F26P(2).  相似文献   

19.
It was found that fructose 1,6-diphosphate, the main intermediate of glycolysis, was able to act as a coenzyme of yeast phosphoglucomutase reaction. The mechanism of the coenzymatic activity of fructose 1,6-diphosphate was studied. It was indicated in the fructose 1,6-diphosphate dependent reaction that glucose 1,6-diphosphate was formed by the phosphate-transfer of fructose 1,6-diphosphate to glucose 1-phosphate in the first step, and in the second step the conversion of glucose 1-phosphate to glucose 6-phosphate, the original mutase reaction, occurred in the presence of glucose 1,6-diphosphate. The kinetic constants in the reaction of the first step were determined from the time courses of the fructose 1,6-diphosphate dependent reaction.  相似文献   

20.
1. Preincubation of partially purified rat liver L-type pyruvate kinase at 25 degrees for 10min. causes a marked increase in co-operativity with respect to both the substrate, phosphoenolpyruvate, and the allosteric activator, fructose 1,6-diphosphate. 2. The results are consistent with the existence of two forms of liver L-type pyruvate kinase, designated forms L(A) and L(B). It is postulated that form L(A) has a low K(m) for phosphoenolpyruvate (about 0.1mm) and is not allosterically activated, whereas form L(B) is allosterically activated by fructose 1,6-diphosphate, exhibiting in the absence of the activator sigmoidal kinetics with half-maximal activity at about 1mm-phosphoenolpyruvate. In the presence of fructose 1,6-diphosphate, form L(B) gives Michaelis-Menten kinetics with K(m) less than 0.1mm. It is further postulated that preincubation converts form L(A) into form L(B). 3. The influence of pH on the preincubation effect was studied. 4. The inhibition of pyruvate kinase by Cu(2+) was studied in detail. Though phosphoenolpyruvate and fructose 1,6-diphosphate readily protect the enzyme against Cu(2+) inhibition, little evidence of significant reversal of the inhibition by these compounds could be found. 5. The effects of starvation, fructose feeding and preincubation on the pyruvate kinase activity of crude homogenates of various tissues of the rat were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号