首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Adult sex ratio (ASR) exhibits immense variation in nature, although neither the causes nor the implications of this variation are fully understood. According to theory, the ASR is expected to influence sex roles and breeding systems, as the rarer sex in the population has more potential partners to mate with than the more common sex. Changes in mate choice, mating systems and parental care suggest that the ASR does influence breeding behaviour, although there is a need for more tests, especially experimental ones. In the context of breeding system evolution, the focus is currently on operational sex ratios (OSRs). We argue that the ASR plays a role of similar importance and urge researchers to study the ASR and the OSR side by side. Finally, we plead for a dynamic view of breeding system evolution with feedbacks between mating, parenting, OSR and ASR on both ecological and evolutionary time scales.  相似文献   

2.
For migratory birds, early arrival at breeding areas has many benefits, such as acquisition of better territories and mates. This strategy has been found in numerous species breeding at north‐temperate latitudes, but has not been yet reported for intra‐tropical migratory species. We evaluated the relationship between arrival date, initiation of breeding, and breeding success of Fork‐tailed Flycatchers (Tyrannus savana) breeding in southeastern Brazil and overwintering in northern South America. We color‐banded adult flycatchers during three breeding seasons and searched for them during the following breeding seasons. We also monitored nests from construction until either failure or fledging of young. We found that: (1) male Fork‐tailed Flycatchers arrived at the breeding site earlier than females, (2) males that arrived earlier had greater breeding success, and (3) nests where eggs were laid earlier in the breeding season were more likely to be successful than those where eggs were laid later. Male Fork‐tailed Flycatchers appeared to benefit from early arrival at a tropical breeding site, potentially mediated by their ability to acquire a high‐quality territory and mate as early as possible, and by the ability of their mate to begin breeding as early as possible. Breeding success for female Fork‐tailed Flycatchers may be determined primarily by a combination of the arrival date of their mate and how quickly they can begin breeding. Our results suggest that protandry occurs in an intra‐tropical migratory bird and that early arrival of males and early initiation of reproduction by females results in greater reproductive success. A better understanding of the underlying mechanisms that control the timing of migration and reproduction of this and other intra‐tropical migratory species is important for evaluating the challenges they face in light of current and future rapid environmental changes.  相似文献   

3.
The origin and maintenance of mating preferences continues to be an important and controversial topic in sexual selection research. Leks and lek‐like mating systems, where individuals gather in particular spots for the sole purpose of mate choice, are particularly puzzling, because the strong directional selection imposed by mate choice should erode genetic variation among competing individuals and negate any benefit for the choosing sex. Here, we take advantage of the lek‐like mating system of the worm pipefish (Nerophis lumbriciformis) to test the phenotype‐linked fertility hypothesis for the maintenance of mating preferences. We use microsatellite markers to perform a parentage analysis, along with a mark–recapture study, to confirm that the worm pipefish has an unusual mating system that strongly resembles a female lek, where females display and males visit the lek to choose mates. Our results show that the most highly ornamented females occupy positions near the centre of the breeding area, and males mating with these females receive fuller broods with larger eggs compared to males mating with less‐ornamented females. We also conduct a laboratory experiment to show that female ornaments are condition‐dependent and honestly signal reproductive potential. Overall, these results are consistent with the predictions of a sex‐independent version of the phenotype‐linked fertility hypothesis, as male preference for female ornaments correlates with fertility benefits.  相似文献   

4.
The mating system is expected to have an important influence on the evolution of mating and parenting behaviors. Although many studies have used experimental evolution to examine how mating behaviors evolve under different mating systems, this approach has seldom been used to study the evolution of parental care. We used experimental evolution to test whether adaptation to different mating systems involves changes in mating and parenting behaviors in populations of the burying beetle, Nicrophorus vespilloides. We maintained populations under monogamy or promiscuity for six generations. This manipulation had an immediate impact on reproductive performance and adult survival. Compared to monogamy, promiscuity reduced brood size and adult (particularly male) survival during breeding. After six generations of experimental evolution, there was no divergence between monogamous and promiscuous populations in mating behaviors. Parents from the promiscuous populations (especially males) displayed less care than parents from the monogamous populations. Our results are consistent with the hypothesis that male care will increase with the certainty of paternity. However, it appears that this change is not associated with a concurrent change in mating behaviors.  相似文献   

5.
Two nonmutually exclusive hypotheses can explain why divorce is an adaptive strategy to improve reproductive success. Under the ‘better option hypothesis’, only one of the two partners initiates divorce to secure a higher‐quality partner and increases reproductive success after divorce. Under the ‘incompatibility hypothesis’, partners are incompatible and hence they may both increase reproductive success after divorce. In a long‐term study of the barn owl (Tyto alba), we address the question of whether one or the two partners derive fitness benefits by divorcing. Our results support the hypothesis that divorce is adaptive: after a poor reproductive season, at least one of the two divorcees increase breeding success up to the level of faithful pairs. By breeding more often together, faithful pairs improve coordination and thereby gain in their efficiency to produce successful fledglings. Males would divorce to obtain a compatible mate rather than a mate of higher quality: a heritable melanin‐based signal of female quality did not predict divorce (indicating that female absolute quality may not be the cause of divorce), but the new mate of divorced males was less melanic than their previous mate. This suggests that, at least for males, a cost of divorce may be to secure a lower‐quality but compatible mate. The better option hypothesis could not be formally rejected, as only one of the two divorcing partners commonly succeeded in obtaining a higher reproductive success after divorce. In conclusion, incompatible partners divorce to restore reproductive success, and by breeding more often together, faithful partners improve coordination.  相似文献   

6.
The formation of long-term pair bonds in marine fish has elicited much empirical study. However, the evolutionary mechanisms involved remain contested and previous theoretical frameworks developed to explain monogamy in birds and mammals are not applicable to many cases of monogamy in marine fish. In this review, we summarise all reported occurrences of social monogamy in marine fish, which has so far been observed in 18 fish families. We test quantitatively the role of ecological and behavioural traits previously suggested to be important for the evolution of monogamy and show that monogamous species occur primarily in the tropics and are associated with coral reef environments in which territory defence and site attachment is facilitated. However, there is little evidence that obligately monogamous species are smaller in body size than species that can adopt a polygynous mating system. We review the evidence pertaining to six hypotheses suggested for the evolution of monogamous pair bonds: (1) biparental care, (2) habitat limitation, (3) low population density/low mate availability/low mobility, (4) increased reproductive efficiency, (5) territory defence, and (6) net benefit of single mate sequestration. We outline predictions and associated empirical tests that can distinguish between these hypotheses, and assess how generally each hypothesis explains monogamy within and between breeding periods for species with different types of territories (i.e. feeding only or feeding and breeding). Hypotheses (1) and (2) have limited applicability to marine fishes, while hypotheses (3)-(5) have little empirical support beyond the species for which they were designed. However, the role of paternal care in promoting monogamous pair bonds is not explicit in these hypotheses, yet paternal care has been reported in more than 70 monogamous marine fish. We show that paternal care may act to increase the likelihood of monogamy in combination with each of the proposed hypotheses through decreased benefits to males from searching for additional mates or increased advantages to females from sequestering a single high-quality mate. Among species defending breeding and feeding territories, the benefits, both within and between reproductive periods, of sequestering a single high-quality mate (hypothesis 6) appear to be the best explanation for socially monogamous pairs. For species without parental care (i.e. holding only feeding territories), territory defence (hypothesis 5) in combination with the benefits of guarding a large mate (hypothesis 6) could potentially explain most instances of monogamy. Empirical studies of marine fishes over the past two decades are therefore slowly changing the view of monogamy from a mating system imposed upon species by environmental constraints to one with direct benefits to both sexes.  相似文献   

7.
Comparing closely related species that live in different environments is a powerful way to understand selective pressures that influence life‐history evolution. We examined a suite of life‐history traits and parental care in neotropical buff‐breasted wrens Cantorchilus leucotis and north‐temperate Carolina wrens Thryothorus ludovicianus (Family Troglodytidae), to test hypotheses about life‐history evolution. As expected, buff‐breasted wrens exhibited smaller clutch sizes and higher annual adult survival than Carolina wrens. We found minimal support for the nest predation hypothesis, as nest survival and age‐corrected provisioning rates to whole broods were similar between species, and number of breeding attempts and breeding season length were greater in temperate wrens. Critical predictions of the food limitation hypothesis were not supported; in particular age‐corrected provisioning rates per nestling were higher in the tropical than temperate species. The adult survival and offspring quality hypothesis garnered the most support, as buff‐breasted wrens exhibited greater age‐corrected provisioning rates per nestling, a longer nestling period, longer re‐nesting intervals following nest success, and lower annual fecundity than Carolina wrens. Despite similarly prolonged breeding seasons, reproductive strategies differ between species with buff‐breasted wrens investing considerably in single broods to optimize first‐year survival and Carolina wrens investing in multiple small broods to optimize annual fecundity.  相似文献   

8.
Lud&#;k Berec  David S. Boukal 《Oikos》2004,104(1):122-132
In this paper we examine how the process of mate search, degree of mate choice and degree of mate fidelity may interact to affect long‐term population dynamics of sexually reproducing species. In particular, we address the following questions: are degree of mate choice and degree of mate fidelity correlated? How does mate search shape this relationship? How does longevity affect mating behaviour? To resolve these questions, we develop a spatially explicit, individual‐based model of a sexually reproducing population with single (i.e. unpaired) males, single females, and pairs as focal individuals. Both this model and its non‐spatial approximation give rise to the Allee effect due to lack of mating possibilities, and sufficiently small/sparse populations always go extinct. We quantify combinations of mate choice and divorce rate under which populations persist or go extinct even from high sizes. We thus show that there exist ecological constraints for possible (co)evolution of mate choice and pair maintenance behaviour. Our models also suggest that colonial species with active mate search strategy survive at higher divorce rates than less colonial animals that search for their mates randomly, and that long‐lived species sustain at higher degrees of mate choice and lower degrees of mate fidelity compared to the short‐lived ones. Connection of these findings to other theoretical results and some empirical observations is discussed.  相似文献   

9.
Why do female migratory birds arrive later than males?   总被引:4,自引:0,他引:4  
1. In migratory birds males tend to arrive first on breeding grounds, except in sex-role reversed species. The two most common explanations are the rank advantage hypothesis, in which male-male competition for breeding sites drives stronger selection for early arrival in males than females, and the mate opportunity hypothesis, which relies on sexual selection, as early arrival improves prospects of mate acquisition more for males than for females. 2. To date, theoretical work has focused on selection for early arrival within a single sex, usually male. However, if fitness depends on territory quality, selection for early arrival should operate on both sexes. Here we use two independent modelling approaches to explore the evolution of protandry (male-first arrival) and protogyny (female-first arrival) under the rank advantage and mate opportunity hypotheses. 3. The rank advantage hypothesis, when operating alone, fails to produce consistent patterns of protandry, despite our assumption that males must occupy territories before females. This is because an individual of either sex benefits if it out-competes same-sex competitors. Rather than promoting protandry, the rank advantage mechanism can sometimes result in protogyny. Female-female competition is stronger than male-male competition early in the season, if females compete for a resource (territories occupied by males) that is initially less common than the resource of interest to males (unoccupied territories). 4. Our results support the mate opportunity hypothesis as an explanation of why protandry is the norm in migratory systems. Male-biased adult sex ratios and high levels of sperm competition (modelled as extra-pair young: EPY) both produce protandry as a result of sexual selection. Protogyny is only observed in our models with female-biased sex ratios and low EPY production. 5. We also show that the effects of sex ratio biases are much stronger than those of EPY production, explore the evidence for sex ratio biases and extra-pair paternity in migratory species and suggest future research directions.  相似文献   

10.
Social monogamy has evolved multiple times and is particularly common in birds. However, it is not well understood why some species live in long‐lasting monogamous partnerships while others change mates between breeding attempts. Here, we investigate mate fidelity in a sequential polygamous shorebird, the snowy plover (Charadrius nivosus), a species in which both males and females may have several breeding attempts within a breeding season with the same or different mates. Using 6 years of data from a well‐monitored population in Bahía de Ceuta, Mexico, we investigated predictors and fitness implications of mate fidelity both within and between years. We show that in order to maximize reproductive success within a season, individuals divorce after successful nesting and re‐mate with the same partner after nest failure. Therefore, divorced plovers, counterintuitively, achieve higher reproductive success than individuals that retain their mate. We also show that different mating decisions between sexes predict different breeding dispersal patterns. Taken together, our findings imply that divorce is an adaptive strategy to improve reproductive success in a stochastic environment. Understanding mate fidelity is important for the evolution of monogamy and polygamy, and these mating behaviors have implications for reproductive success and population productivity.  相似文献   

11.
Here we analysed the role played by breeding systems and pollinators in the evolution of heterostyly by testing whether evolution towards heterostyly is associated with style polymorphism and changes in pollinator proficiency or breeding system variation (Darwinian hypothesis). We studied pollinators, pollen-transfer efficiency, and incompatibility systems in all seven species of Narcissus sect. Apodanthi for which we also obtained chloroplast DNA (cpDNA) sequences from three spacers to infer phylogenetic relationships. Five species are self-incompatible and within-morph cross-compatible. Heterostylous (Narcissus albimarginatus) and style-dimorphic (Narcissus cuatrecasasii) species that have a high degree of reciprocity in stigma and anther height are primarily pollinated by solitary bees. The style-monomorphic species (Narcissus watieri) and the style-dimorphic species with the least stigma-anther reciprocity (Narcissus rupicola) are both self-compatible and pollinated by butterflies, moths and hover flies. Phylogenetic reconstruction of character transitions indicates that the shift from style dimorphism to distyly is associated with a shift to bee pollination. Pollination by lepidopterans and flies is associated with stable style dimorphism and monomorphism. Evolution and maintenance of style polymorphisms in this group of species are independent of incompatibility systems. Taken together, our results strongly support the pollinator-based model for evolution of heterostyly and style length polymorphisms in general.  相似文献   

12.
We investigate which hypothesis, the “better mate hypothesis” or the “better territory hypothesis” best explains the unusually high divorce rate (59%) in a population of blue tits (Parus caeruleus) living in a sclerophyllous habitat characterised by severe environmental constraints (trophic, parasitic, climatic) on the island of Corsica, France. Using data from the breeding seasons 1985–1998 and from a brood size experiment (1990–1993) we examined the causes of divorce and their consequences on breeding performance, mate assortment and territory choice. Breeding performance had no significant effect on whether birds re‐united or divorced in the next breeding season. Re‐uniting pairs did better than divorced females and the latter improved their breeding performance compared to prior to divorce, but this was mainly due to age and territory effects. There were no differences in male performance depending on whether they re‐united or divorced. The age combination of pairs did not differ between re‐uniting and divorcing pairs, but mate assortment changed after divorce with males re‐mating more often with older partners than females. Manipulation of brood size showed a trend for birds with enlarged broods to divorce more. Pairs responded significantly to territory quality by divorcing more often in poor than in good breeding sites. Both faithful pairs and male divorcees had shorter breeding dispersal distances than female divorcees. Divorce rates were determined by the large differences in quality among breeding sites. Males, whatever their status, usually retained their previous territory whereas divorced females moved significantly longer distances and improved their breeding site. Moving to a better territory after divorce benefits only females which appear to be the choosing sex in the decision to divorce. This study strongly supports the “habitat mediated hypothesis” and we suggest that the large observed intraspecific variation in the magnitude of divorce rates in many species of birds is mostly determined by habitat characteristics.  相似文献   

13.
The differential allocation hypothesis predicts that females should invest more in reproduction when paired with attractive males. We measured egg volume in Cape sugarbirds (Promerops cafer), a sexually dimorphic passerine, in relation to paternity of the offspring and in response to an experimental tail length treatment. We manipulated tail length, after pair formation, but before egg laying: males had their tails either shortened or left unmanipulated. Our manipulation was designed to affect female allocation in a particular breeding attempt rather than long‐term mate choice: males with shortened tails would appear to be signalling at a lower level than they should given their quality. We found that egg volume was smaller in the nests of males with experimentally shortened tails but larger when the offspring were the result of extra‐pair matings. Both these findings are consistent with the differential allocation hypothesis. We suggest that tail length may be used by females as a cue for mate quality, eliciting reduced female investment when breeding with social mates; and with males with shortened tails.  相似文献   

14.
The evolution of breeding systems was studied in the genus Acer, with special attention to the origin of androdioecy and dioecy, using a phylogenetic approach. Parsimony and maximum-likelihood techniques were used to infer the ancestral character state and trends in the evolution of breeding systems. Information on breeding systems was obtained from the literature, and phylogenetic relationships were taken from three published phylogenies. Although a general trend from duodichogamy to dioecy through heterodichogamy has been proposed for the genus Acer, our results show that a general trend is not detected when phylogenetic relationships are taken into account. Dioecy appeared as a derived state that evolved at least three times and never reversed towards other states. Three different paths to dioecy have been followed in the genus Acer: from heterodichogamous androdioecy; from heterodichogamous trioecy; and from dichogamous subdioecy. Therefore, although the best documented cases of evolution of androdioecy indicate that this breeding system evolves from dioecy, in the genus Acer the opposite situation occurs (androdioecy leading to dioecy). Here we discuss the role of inbreeding avoidance and sexual specialization as selective forces driving the evolution of dioecy in the genus Acer.  相似文献   

15.
The transition to cooperative breeding may alter maternal investment strategies depending on density of breeders, extent of reproductive skew, and allo‐maternal care. Change in optimal investment from solitary to cooperative breeding can be investigated by comparing social species with nonsocial congeners. We tested two hypotheses in a mainly semelparous system: that social, cooperative breeders, compared to subsocial, solitarily breeding congeners, (1) lay fewer and larger eggs because larger offspring compete better for limited resources and become reproducers; (2) induce egg size variation within clutches as a bet‐hedging strategy to ensure that some offspring become reproducers. Within two spider genera, Anelosimus and Stegodyphus, we compared species from similar habitats and augmented the results with a mini‐meta‐analysis of egg numbers depicted in phylogenies. We found that social species indeed laid fewer, larger eggs than subsocials, while egg size variation was low overall, giving no support for bet‐hedging. We propose that the transition to cooperative breeding selects for producing few, large offspring because reproductive skew and high density of breeders and young create competition for resources and reproduction. Convergent evolution has shaped maternal strategies similarly in phylogenetically distant species and directed cooperatively breeding spiders to invest in quality rather than quantity of offspring.  相似文献   

16.
Zika virus was previously considered to cause only a benign infection in humans. Studies of recent outbreaks of Zika virus in the Pacific, South America, Mexico and the Caribbean have associated the virus with severe neuropathology. Viral evolution may be one factor contributing to an apparent change in Zika disease as it spread from Southeast Asia across the Pacific to the Americas. To address this possibility, we have employed computational tools to compare the phylogeny, geography, immunology and RNA structure of Zika virus isolates from Africa, Asia, the Pacific and the Americas. In doing so, we compare and contrast methods and results for tree search and rooting of Zika virus phylogenies. In some phylogenetic analyses we find support for the hypothesis that there is a deep common ancestor between African and Asian clades (the “Asia/Africa” hypothesis). In other phylogenetic analyses, we find that Asian lineages are descendent from African lineages (the “out of Africa” hypothesis). In addition, we identify and evaluate key mutations in viral envelope protein coding and untranslated terminal RNA regions. We find stepwise mutations that have altered both immunological motif sets and regulatory sequence elements. Both of these sets of changes distinguish viruses found in Africa from those in the emergent Asia–Pacific–Americas lineage. These findings support the working hypothesis that mutations acquired by Zika virus in the Pacific and Americas contribute to changes in pathology. These results can inform experiments required to elucidate the role of viral genetic evolution in changes in neuropathology, including microcephaly and other neurological and skeletomuscular issues in infants, and Guillain‐Barré syndrome in adults.  相似文献   

17.
Timing of arrival/emergence to the breeding grounds is under contrasting natural and sexual selection pressures. Because of differences in sex roles and physiology, the balance between these pressures on either sex may differ, leading to earlier male (protandry) or female (protogyny) arrival. We test several competing hypotheses for the evolution of protandry using migration data for 22 bird species, including for the first time several monochromatic ones where sexual selection is supposedly less intense. Across species, protandry positively covaried with sexual size dimorphism but not with dichromatism. Within species, there was weak evidence that males migrate earlier because, being larger, they are less susceptible to adverse conditions. Our results do not support the ‘rank advantage’ and the ‘differential susceptibility’ hypotheses, nor the ‘mate opportunity’ hypothesis, which predicts covariation of protandry with dichromatism. Conversely, they are compatible with ‘mate choice’ arguments, whereby females use condition‐dependent arrival date to assess mate quality.  相似文献   

18.
In many cooperatively breeding species, females mate extra‐group, the adaptive value of which remains poorly understood. One hypothesis posits that females employ extra‐group mating to access mates whose genotypes are more dissimilar to their own than their social mates, so as to increase offspring heterozygosity. We test this hypothesis using life history and genetic data from 36 cooperatively breeding white‐browed sparrow weaver (Plocepasser mahali) groups. Contrary to prediction, a dominant female's relatedness to her social mate did not drive extra‐group mating decisions and, moreover, extra‐group mating females were significantly more related to their extra‐group sires than their social mates. Instead, dominant females were substantially more likely to mate extra‐group when paired to a dominant male of low heterozygosity, and their extra‐group mates (typically dominants themselves) were significantly more heterozygous than the males they cuckolded. The combined effects of mating with extra‐group males of closer relatedness, but higher heterozygosity resulted in extra‐group‐sired offspring that were no more heterozygous than their within‐group‐sired half‐siblings. Our findings are consistent with a role for male–male competition in driving extra‐group mating and suggest that the local kin structure typical of cooperative breeders could counter potential benefits to females of mating extra‐group by exposing them to a risk of inbreeding.  相似文献   

19.
Limited availability of mating partners has been proposed as an explanation for the occurrence of simultaneous hermaphroditism in animals with pair mating. When low population density or low mobility of a species limits the number of potential mates, simultaneous hermaphrodites may have a selective advantage because, first, they are able to adjust the allocation of resources between male and female functions in order to maximize fitness; second, in a hermaphroditic population the likelihood of meeting a partner is higher because all individuals are potential mates; and, third, in the absence of mating partners, many simultaneously hermaphroditic animals have the option of reproducing through self-fertilization. Recognizing that mate availability is central to the existing theory of hermaphroditism in animals, it is important to examine the effects of mate search on predictions of the stability of hermaphroditism. Many hermaphroditic animals can increase the number of potential mates they contact by active searching. However, since mate search has costs in terms of time and energy, the increased number of potential mates will be traded off against the amount of resources that can be allocated to the production of gametes. We explore the consequences of this trade-off to the evolution of mating strategies and to the selective advantage of self-fertilization. We show that in low and moderate population densities, poor mate-search efficiency and high costs of searching stabilize hermaphroditism and bias sex allocation toward female function. In addition, in very low population densities, there is strong selective advantage for self-fertilization, but this advantage decreases considerably in species with high mate-search efficiency. Most important, however, we present a novel evolutionary prediction: when mate search is efficient, disruptive frequency-dependent selection on time allocation to mate search leads to the evolution of searching and nonsearching phenotypes and, ultimately, to the evolution of males and females.  相似文献   

20.
We studied the effects of age on breeding performance and survival probability in a peregrine falcon population, using data from a long term monitoring programme (carried out over 16 yr), in which we were able to identify individual birds. We compared the breeding performance and survival of yearling breeders, first‐time adult breeders and adult breeders. We found significant differences in breeding performance but not in survival. Yearling breeders had lower breeding success than older individuals but the breeding performance of inexperienced adults did not differ from that of experienced adults. We did not find changes in terminal breeding success since peregrines in their last year of life sustained the performance levels shown in previous years although with increasing variability. We found no evidence that attempting to breed affected survival probability in any age group. We argue that differences in breeding performance are related to age, not to breeding experience, and that there is an age threshold, coincident with the development of adult plumage, after which breeding performance is not affected either by age or experience. Peregrines that start breeding as yearlings are likely to have greater lifetime reproductive success than birds entering the breeding pool as adults. Consequently, such birds may represent a set of high quality individuals. Our results support the age‐related competence improvement hypothesis as being the relevant explanation for the increase in breeding performance with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号