首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na(+),K(+)-ATPase is postulated to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembrane Na(+)-efflux from cardiac cells in spontaneously hypertensive rats (SHR). In the investigated group of SHR the systolic blood pressure and the heart weight were increased by 48% and by 60%, respectively. Upon activating the cardiac Na(+),K(+)-ATPase with substrate, its activity was lower in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed a decrease of the maximum velocity (Vmax) by 28% which was accompanied with lowered affinity of the ATP-binding site as indicated by the increased value of Michaelis-Menten constant (Km) by 354% in SHR. During activation with Na(+), we observed an inhibition of the enzyme in hearts from SHR at all tested Na(+) concentrations. The value of Vmax decreased by 37%, and the concentration of Na(+) that gives half maximal reaction velocity (KNa) increased by 98%. This impairment in the affinity of the Na(+)-binding site together with decreased affinity to ATP in the molecule of the Na(+),K(+)-ATPase are probably responsible for the deteriorated efflux of the excessive Na(+) from the intracellular space in hearts of SHR.  相似文献   

2.
The aim of present study was the investigation of functional properties of the cardiac Na,K-ATPase in 16 weeks old male and female spontaneously hypertensive rats (SHR). The Na,K-ATPase activity in the presence of increasing concentrations of ATP, as well as Na(+) was lower in SHR of both genders, as compared to respective normotensive controls. Evaluation of kinetic parameters revealed a significant decrease of the maximum velocity (V(max)) in males (30% for ATP-activation, 40% for Na(+)-activation), as well as in females (24% for ATP, 29% for Na(+)), indicating a hypertension-induced diminution of the number of active enzyme molecules in cardiac sarcolemma. Insignificant changes were observed in the value of Michaelis-Menten constant (K(m)) in both cases. The concentration of sodium that gives half-maximal reaction velocity (K(Na)), increased by 38% in male and by 70% in female SHR. This impairment in the affinity of the Na(+)-binding site together with decreased number of active Na,K-ATPase molecules are probably responsible for the deteriorated enzyme-function in hearts of SHR. Direct comparison of SHR of both genders showed, that the enzyme from female hearts seems to be adapted better to hypertension as documented by its increased activity as a consequence of improved ability to bind and utilize ATP, as suggested by 32% decrease of K(m) value in females. In addition, the enzyme from female hearts is able to increase its activity (by 41%) in the presence of increasing sodium concentration even in the range where the enzyme from male hearts is already saturated.  相似文献   

3.
It was previously shown that 4 hours lasting inhibition of nitric oxide synthesis by administration of an L-arginine analogue, the A(G)-nitro-L-arginine methyl ester (L-NAME) changed the affinity of the Na-binding site of Na,K-ATPase thus resulting in elevation of enzyme activity especially at higher concentrations of sodium. Using the same experimental model, we focused our attention in the present study to the question of binding of ATP to the enzyme molecule in the left ventricle (LV), ventricular septum (S) and the right ventricle (RV) of the dog heart. Activation of the enzyme by increasing concentrations of ATP revealed a significant increase of the Vmax only in septum (by 38 %). The K(M) increased significantly in septum (by 40 %) and in left ventricle (by 56 %) indicating an altered sensitivity of the ATP-binding site of Na,K-ATPase in the hearts of NO-deficient animals. The alterations of Na,K-ATPase in its ability to bind and hydrolyze ATP are localized to the tissue surrounding the cavity of the left ventricle.  相似文献   

4.
Macula densa (MD) cells of the juxtaglomerular apparatus (JGA) synthesize type 1 nitric oxide synthase (NOS1) and type 2 cyclooxygenase (COX-2). Both nitric oxide (NO) and prostaglandins have been considered to mediate or modulate the control of renin secretion. Reactive oxygen species (ROS) produced locally by NADPH oxidase may influence NO bioavailability. We have tested the hypothesis that in hypertension elevated ROS levels may modify the expression of NOS1 and COX-2 in the JGA, thereby interacting with juxtaglomerular signaling. To this end, spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats (WKY) received the specific NADPH oxidase inhibitor, apocynin, during 3 wk. Renal functional and histochemical parameters, plasma renin activity (PRA), and as a measure of ROS activity, urinary isoprostane excretion (IP) were evaluated. Compared with WKY, IP levels in untreated SHR were 2.2-fold increased, and NOS1 immunoreactiviy (IR) of JGA 1.5-fold increased, whereas COX-2 IR was reduced to 35%, renin IR to 51%, and PRA to 7%. Apocynin treatment reduced IP levels in SHR to 52%, NOS1 IR to 69%, and renin IR to 62% of untreated SHR, whereas renin mRNA, COX-2 IR, glomerular filtration rate, PRA, and systolic blood pressure remained unchanged. WKY revealed no changes under apocynin treatment. These data show that NADPH oxidase is an important contributor to elevated levels of ROS in hypertension. Upregulation of MD NOS1 in SHR may have the potential of blunting the functional impact of ROS at the level of bioavailable NO. Downregulated COX-2 and renin levels in SHR are apparently unrelated to oxidative stress, since apocynin treatment had no effect on these parameters.  相似文献   

5.
Direct dose-dependent effects of angiotensin II on renal tubular sodium reabsorption have been demonstrated. Alterations in tubular sodium reabsorption may occur via modulation of renal Na,K-ATPase activity. Thus, these experiments were undertaken to ascertain whether angiotensin II could influence renal cortical Na,K-ATPase activity. Angiotensin II, 495 ng/microliters/h, or vehicle (controls) was infused for 24 h via miniosmotic pumps 48 h after rats were adrenalectomized and implanted with osmotic pumps containing 12.5 micrograms/microliters corticosterone (Treatment I) or both corticosterone and 0.2 microgram/microliter aldosterone (Treatment II), and in rats receiving 3% NaCl in their food (sodium loaded, Treatment III). Rats receiving Treatments I and III received saline to drink. Renal cortical microsomal membranes were prepared, and the effects of angiotensin II infusion on the K1/2 and Vmax for Na, K, and ATP determined. Angiotensin II infusions were associated with (i) a decrease (P less than 0.001) in the K1/2 for Na activation of Na,K-ATPase from 14 +/- 3 to 6 +/- 1 (n = 4 experiments), 16 +/- 1 to 12 +/- 1 (n = 5), and 12 +/- 3 to 7 +/- 1 (n = 5) mM (means +/- SE) for treatments I, II, and III, respectively; (ii) no changes in the K1/2 for K activation or the Km for ATP; (iii) no changes in the Vmax for Na, K, or ATP; and (iv) no change in Mg-ATPase activity. We conclude that angiotensin II infusion is associated with a decrease in the K1/2 of renal cortical Na,K-ATPase activity for sodium. This action of angiotensin II on the enzyme activity may contribute to the regulation of tubular sodium transport.  相似文献   

6.
This investigation discloses the recognition of an FXYD2 protein in a microsomal Na,K-ATPase preparation from the posterior gills of the blue crab, Callinectes danae, by a mammalian (rabbit) FXYD2 peptide specific antibody (γC(33)) and MALDI-TOF-TOF mass spectrometry techniques. This is the first demonstration of an invertebrate FXYD2 protein. The addition of exogenous pig FXYD2 peptide to the crab gill microsomal fraction stimulated Na,K-ATPase activity in a dose-dependent manner. Exogenous pig FXYD2 also considerably increased enzyme affinity for K(+), ATP and NH(4)(+). K(0.5) for Na(+) was unaffected. Exogenous pig FXYD2 increased the V(max) for stimulation of gill Na,K-ATPase activity by Na(+), K(+) and ATP, by 30% to 40%. The crab gill FXYD2 is phosphorylated by PKA, suggesting a regulatory function similar to that known for the mammalian enzyme. The PKA-phosphorylated pig FXYD2 peptide stimulated the crab gill Na,K-ATPase activity by 80%, about 2-fold greater than did the non-phosphorylated peptide. Stimulation by the PKC-phosphorylated pig FXYD2 peptide was minimal. These findings confirm the presence of an FXYD2 peptide in the crab gill Na,K-ATPase and demonstrate that this peptide plays an important role in regulating enzyme activity.  相似文献   

7.
Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ~3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (-4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63) and Ser(68). Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.  相似文献   

8.
It is known that hypertension is accompanied by increased [Na+]i. The functional properties of Na,K-ATPase, which transports the Na+ out and K+ into myocardial cells during the relaxation phase, were investigated in the left ventricle (LV), septum (SV) and the right ventricle (RV) of anesthetized dogs with moderate acute blood pressure elevation elicited by short-term (4-hour) NO synthase inhibition. The NO-insufficiency was induced by administration of an L-arginine analogue, the N(G)-nitro-L-arginine methyl ester (L-NAME). Concerning the function of Na,K-ATPase under the conditions of lowered NO synthesis, we focused our attention to the binding of Na+ to the enzyme molecule. Activation of the enzyme by increasing Na+ concentrations revealed significant changes in both the maximal velocity (Vmax) and the affinity for Na+ (K(Na)) in all investigated heart sections. The Vmax increased by 27% in LV, by 87% in SV and by 58% in RV. The K(Na) value increased by 86% in LV, by 105% in SV and by 93% in RV, indicating an apparent decrease in the sensitivity of the Na+-binding site in the Na,K-ATPase molecule. This apparently decreased pump affinity for Na+ together with the increase of Vmax suggest that, during the short-term inhibition of NO synthesis, the Na,K-ATPase is capable of extruding the excessive Na+ from the myocardial cells more effectively at higher [Na+]i, as compared to the Na,K-ATPase of control animals.  相似文献   

9.
Increased blood pressure (BP) in genetic hypertension is usually caused by high activity of sympathetic nervous system (SNS) which is enhanced by central angiotensin II but lowered by central nitric oxide (NO). We have therefore evaluated NO synthase (NOS) activity as well as neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS) protein expression in brainstem and midbrain of adult spontaneously hypertensive rats (SHR) characterized by enhanced sympathetic vasoconstriction. We also studied possible participation of brain NO in antihypertensive effects of chronic captopril treatment of adult SHR. NOS activity was increased in midbrain of SHR compared to Wistar-Kyoto (WKY) rats. This could be ascribed to enhanced iNOS expression, whereas nNOS expression was unchanged and eNOS expression was reduced in this brain region. In contrast, no significant changes of NOS activity were found in brainstem of SHR in which nNOS and iNOS expression was unchanged, but eNOS expression was increased. Chronic captopril administration lowered BP of adult SHR mainly by attenuation of sympathetic tone, whereas the reduction of angiotensin II-dependent vasoconstriction and the decrease of residual BP (amelioration of structural remodeling of resistance vessels) were less important. This treatment did not affect significantly either NOS activity or expression of any NOS isoform in the two brain regions. Our data do not support the hypothesis that altered brain NO formation contributes to sympathetic hyperactivity and high BP of adult SHR with established hypertension.  相似文献   

10.
Treatment of the canine renal Na,K-ATPase with N-(2-nitro-4-isothiocyanophenyl)-imidazole (NIPI), a new imidazole-based probe, results in irreversible loss of enzymatic activity. Inactivation of 95% of the Na,K-ATPase activity is achieved by the covalent binding of 1 molecule of [3H]NIPI to a single site on the alpha-subunit of the Na,K-ATPase. The reactivity of this site toward NIPI is about 10-fold greater when the enzyme is in the E1Na or sodium-bound form than when it is in the E2K or potassium-bound form. K+ ions prevent the enhanced reactivity associated with Na+ binding. Labeling and inactivation of the enzyme is prevented by the simultaneous presence of ATP or ADP (but not by AMP). The apparent affinity with which ATP prevents the inactivation by NIPI at pH 8.5 is increased from 30 to 3 microM by the presence of Na+ ions. This suggests that the affinity with which native enzyme binds ATP (or ADP) at this pH is enhanced by Na+ binding to the enzyme. Modification of the single sodium-responsive residue on the alpha-subunit of the Na,K-ATPase results in loss of high affinity ATP binding, without affecting phosphorylation from Pi. Modification with NIPI probably alters the adenosine binding region without affecting the region close to the phosphorylated carboxyl residue aspartate 369. Tightly bound (or occluded) Rb+ ions are not displaced by ATP (4 mM) in the inactivated enzyme. Thus modification of a single residue simultaneously blocks ATP acting with either high or low affinity on the Na,K-ATPase. These observations suggest that there is a single residue on the alpha-subunit (probably a lysine) which drastically alters its reactivity as Na+ binds to the enzyme. This lysine residue is essential for catalytic activity and is prevented from reacting with NIPI when ATP binds to the enzyme. Thus, the essential lysine residue involved may be part of the ATP binding domain of the Na,K-ATPase.  相似文献   

11.
Purinergic receptors in lens epithelium suggest lens function can be altered by chemical signals from aqueous humor or the lens itself. Here we show release of ATP by intact porcine lenses exposed to hyposmotic solution (200 mOsm). 18α-glycyrrhetinic acid (AGA) added together with probenecid eliminated the ATP increase. N-ethylmaleimide (200 μM), an exocytotic inhibitor, had no significant effect on ATP increase. Lenses exposed to hyposmotic solution displayed a ~400% increase of propidium iodide (PI) entry into the epithelium. The increased ability of PI (MW 668) to enter the epithelium suggests possible opening of connexin and/or pannexin hemichannels. This is consistent with detection of connexin 43, connexin 50, and pannexin 1 in the epithelium and the ability of AGA + probenecid to prevent ATP release. Na,K-ATPase activity doubled in the epithelium of lenses exposed to hyposmotic solution. The increase of Na,K-ATPase activity did not occur when apyrase was used to prevent extracellular ATP accumulation or when AGA + probenecid prevented ATP release. The increase of Na,K-ATPase activity was inhibited by the purinergic P2 antagonist reactive blue-2 and pertussis toxin, a G-protein inhibitor, but not by the P2X antagonist PPADS. Hyposmotic solution activated Src family kinase (SFK) in the epithelium, judged by Western blot. The SFK inhibitor PP2 abolished both SFK activation and the Na,K-ATPase activity increase. In summary, hyposmotic shock-induced ATP release is sufficient to activate a purinergic receptor- and SFK-dependent mechanism that stimulates Na,K-ATPase activity. The responses might signify an autoregulatory loop initiated by mechanical stress or osmotic swelling.  相似文献   

12.
The role of multiple isoforms for the alpha subunit of Na,K-ATPase is essentially unknown. To examine the functional properties of the three alpha subunit isoforms, we developed a system for the heterologous expression of Na,K-ATPase in which the enzymatic activity of each isoform can be independently analyzed. Ouabain-resistant forms of the rat alpha 2 and alpha 3 subunits were constructed by site-directed mutagenesis of amino acid residues at the extracellular borders of the first and second transmembrane domains (L111R and N122D for alpha 2 and Q108R and N119D for alpha 3). cDNAs encoding the rat alpha 1 subunit, which is naturally ouabain-resistant, and rat alpha 2 and alpha 3, which were mutated to ouabain resistance (designated rat alpha 2* and rat alpha 3*, respectively) were cloned into an expression vector and transfected into HeLa cells. Resistant clones were isolated and analyzed for ouabain-inhibitable ATPase activity in the presence of 1 microM ouabain, which inhibits the endogenous Na,K-ATPase present in HeLa cells (I50 approximately equal to 10 nM). The remaining activity corresponds to Na,K-ATPase molecules containing the transfected rat alpha 1, rat alpha 2*, or rat alpha 3* isoforms. Utilizing this system, we examined Na+, K+, and ATP dependence of enzyme activity. Na,K-ATPase molecules containing rat alpha 1 and rat alpha 2* exhibited a 2-3-fold higher apparent affinity for Na+ than those containing rat alpha 3* (apparent KNa+ (millimolar): rat alpha 1 = 1.15 +/- 0.13; rat alpha 2* = 1.05 +/- 0.11; rat alpha 3* = 3.08 +/- 0.06). Additionally, rat alpha 3* had a slightly higher apparent affinity for ATP (in the millimolar concentration range) compared with rat alpha 1 or rat alpha 2* (apparent K0.5 (millimolar): rat alpha 1 = 0.43 +/- 0.12; rat alpha 2* = 0.54 +/- 0.15; rat alpha 3* = 0.21 +/- 0.04) and all three isoforms has similar apparent affinities for K+ (apparent KK+: rat alpha 1 = 0.45 +/- 0.01; rat alpha 2* = 0.43 +/- 0.004; rat alpha 3* = 0.27 +/- 0.01). This study represents the first comparison of the functional properties of the three Na,K-ATPase alpha isoforms expressed in the same cell type.  相似文献   

13.
Exposure of ARL 15 cells to medium containing reduced concentrations of K+ (0.65 mM) elicited a 50-100% increase in Na,K-ATPase activity. The inhibition by ouabain of both the basal and the induced enzyme conformed to a single-site model (KI = 1 x 10(-4) M). The low K+-induced increment in Na,K-ATPase activity was accompanied by an equivalent increase in the abundance of Na,K-pump sites estimated by ouabain-stabilized ("back-door") phosphorylation, such that the calculated catalytic turnover number of approximately 8000/min was minimally changed. Comparison of the dependence of ouabain-inhibitable K+ uptake on intracellular Na+ and on extracellular K+ concentrations in control and low K+-treated cells revealed no change in the respective half-maximal stimulatory concentrations for these cations, whereas the maximal rate of active K+ uptake in cells exposed to low external K+ increased by nearly 100%. The derived Hill coefficients for active K+ transport rate were also unchanged by the low K+ treatment (i.e. approximately 1.4 for extracellular K+ and 2.6 for intracellular Na+). Na,K-ATPase activity of basal and low K+-induced cells calculated from the measured maximal Na,K transport rate closely approximated the Na,K-ATPase activity measured enzymatically in unfractionated cell lysates under Vmax conditions, suggesting that all or most of the Na,K-ATPase enzymatic units present in both basal and stimulated states are functionally active. Northern blot analysis of RNA isolated from control cells indicated the presence of the Na,K-ATPase alpha-I isoform of the enzyme which increased by nearly 200% following incubation of the cells in low-K+ medium. By contrast, the alpha-II and alpha-III mRNAs were undetectable in either the basal or low K+-stimulated state. These results indicate that the Na,K-ATPase induced by incubation of ARL 15 cells in low-K+ medium is kinetically and functionally indistinguishable from the basal enzyme, and that only the alpha-I isoform is expressed under control and low-K+ conditions.  相似文献   

14.
The aim of this study was to assess the molecular basis of renal Na,K-ATPase disturbances in response to NO-deficient hypertension induced in rats by NO-synthase inhibition with 40 mg/kg/day N(G)-nitro-L-arginine methyl ester (L-NAME) for four weeks. After 4-week administration of L-NAME, the systolic blood pressure (SBP) increased by 30 %. Three weeks after terminating the treatment, SBP recovered to control value. When activating the Na,K-ATPase with its substrate ATP, a 36 % increase in K(m) and 29 % decrease in V(max) values were observed in NO-deficient rats. During activation with Na+, the V(max) was decreased by 20 % and the K(Na) was increased by 111 %, indicating a profound decrease in the affinity of the Na+-binding site in NO-deficient rats. After spontaneous recovery from hypertension, the V(max) remained at the level as in hypertension for both types of enzyme activation. However, in the presence of lower concentrations of substrate which are of physiological relevance an improvement of the enzyme activity was observed as documented by return of K(m) for ATP to control value. The K(Na) value for Na+ was decreased by 27 % as compared to hypertension, but still exceeded the corresponding value in the control group by 55 % thus resulting in a partial restoration of Na+ affinity of Na,K-ATPase which was depressed as a consequence of NO-dependent hypertension.  相似文献   

15.
Cornelius F  Mahmmoud YA  Meischke L  Cramb G 《Biochemistry》2005,44(39):13051-13062
The proteolytic profile after mild controlled trypsin cleavage of shark rectal gland Na,K-ATPase was characterized and compared to that of pig kidney Na,K-ATPase, and conditions for achieving N-terminal cleavage of the alpha-subunit at the T(2) trypsin cleavage site were established. Using such conditions, the shark enzyme N-terminus was much more susceptible to proteolysis than the pig enzyme. Nevertheless, the maximum hydrolytic activity was almost unaffected for the shark enzyme, whereas it was significantly decreased for the pig kidney enzyme. The apparent ATP affinity was unchanged for shark but increased for pig enzyme after N-terminal truncation. The main common effect following N-terminal truncation of shark and pig Na,K-ATPase is a shift in the E(1)-E(2) conformational equilibrium toward E(1). The phosphorylation and the main rate-limiting E(2) --> E(1) step are both accelerated after N-terminal truncation of the shark enzyme, but decreased significantly in the pig kidney enzyme. Some of the kinetic differences, like the acceleration of the phosphorylation reaction, following N-terminal truncation of the two preparations may be due to the fact that under the conditions used for N-terminal truncation, the C-terminal domain of the FXYD regulatory protein of the shark enzyme, PLMS or FXYD10, was also cleaved, whereas the gamma or FXYD2 of the pig enzyme was not. In the shark enzyme, N-terminal truncation of the alpha-subunit abolished association of exogenous PLMS with the alpha-subunit and the functional interactions were abrogated. Moreover, PKC phosphorylation of the preparation, which relieves PLMS inhibition of Na,K-ATPase activity, exposed the N-terminal trypsin cleavage site. It is suggested that PLMS interacts functionally with the N-terminus of the shark Na,K-ATPase to control the E(1)-E(2) conformational transition of the enzyme and that such interactions may be controlled by regulatory protein kinase phosphorylation of the N-terminus. Such interactions are likely in shark enzyme where PLMS has been demonstrated by cross-linking to associate with the Na,K-ATPase A-domain.  相似文献   

16.
The ATPase preparations from the hog thyroid was preincubated with various amounts of trypsin. The activity of Mg-ATPase was consistently elevated. On the contrary, the Na, K-ATPase activity decreased with increasing amounts of trypsin. The effects were similar to those which were observed in the enzyme preparations treated with basis polyamino acids as previously reported. This phenomenon seemed to be specific in the preparations from the thyroid. The Mg-dependent activity was increased after pretreatment with trypsin or poly-L-lysine (PLL) when CTP, ITP and UTP were used as substrate. Thus the substrate specificity of Mg-ATPase was low. The enzyme-kinetics using ATP as substrate showed that the increase in activity was due to an increase in Vmax and not to a change in Km. The activity of Mg-ATPase was increased even after 30 min of preincubation with trypsin, while the Na, K-ATPase activity was almost diminished. These results suggest that the activity of Mg-ATPase in the preparation from the thyroid is specifically changed by the modification of the molecular environment of the enzyme with trypsin or basic polyamino acids.  相似文献   

17.
The dependence of Na,K-ATPase activity on concentrations of ATP, Na+, K+, Mg2+ and ouabain in the membrane preparations of crab gills was studied. The first group of crabs was adapted to freshened (25%) and the second one--to normal (100%) sea water. A 40-day adaptation of crabs to the freshened sea water results in an increase of maximal activity of Na,K-ATPase, but does not affect the enzyme affinity for ATP, Na+, K+, Mg2+ and ouabain, as well as its cooperative properties. It is assumed that adaptation of crabs to freshened sea water is accompanied by an accumulation of Na, K-ATPase in the epithelial cell membranes or crab gills without causing any qualitative changes of the enzyme.  相似文献   

18.
Cornelius F  Mahmmoud YA 《Biochemistry》2007,46(9):2371-2379
FXYD10 is a 74 amino acid small protein which regulates the activity of shark Na,K-ATPase. The lipid dependence of this regulatory interaction of FXYD10 with shark Na,K-ATPase was investigated using reconstitution into DOPC/cholesterol liposomes with or without the replacement of 20 mol % DOPC with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither in the presence nor in the absence of anionic phospholipids did protein kinase phosphorylation of native FXYD10, which relieves the inhibition, affect such cross-linking. Together, this seems to indicate that phosphorylation involves only modest structural rearrangements between the cytoplasmic domain of FXYD10 and the Na,K-ATPase A-domain.  相似文献   

19.
The activity of Na+, K(+)-ATPase in SHR erythrocytes treated with saponin is increased by 30-40% as compared to the Brown Norway (BN.lx) strain whereas the activity of Ca(2+)-ATPase is decreased by 20-30%. Passive permeability of SHR erythrocytes determined by 86Rb influx is increased by 20-30%. In the presence of orthovanadate erythrocytes of SHR accumulate 45Ca by 80% more than BN.lx red cells. There was no difference in Na+/H+ exchange between erythrocytes of SHR and BN.lx animals.  相似文献   

20.
1. Cold-acclimated (1 degree C) goldfish (Carassius auratus) branchial Na/K-ATPase activity was elevated 100% while renal Na/K-ATPase activity was not significantly affected compared with warm-acclimated (20 degrees C) goldfish. 2. Cold-acclimated goldfish branchial and renal Mg-ATPase activity was reduced 18 and 30% on a per mg protein basis, respectively. 3. Renal Na/K-ATPase activity was 4.6- and 1.6-fold greater than gill in cold- and warm-acclimated fish, respectively. 4. The elevated branchial Na/K-ATPase activity and the unchanged renal Na/K-ATPase activity are consistent with the maintenance of the reduced blood ion level in cold-acclimated goldfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号