首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli revealed the existence of a molecular tunnel that has been proposed to facilitate the translocation of reaction intermediates between remotely located active sites. Five highly conserved glutamate residues, including Glu-25, Glu-383, Glu-577, Glu-604, and Glu-916, are close together in two clusters in the interior wall of the molecular tunnel that enables the intermediate carbamate to migrate from the site of synthesis to the site of utilization. Two arginines, Arg-306 and Arg-848, are located at either end of the carbamate tunnel and participate in the binding of ATP at each of the two active sites within the large subunit of CPS. The mutation of Glu-25 or Glu-577 results in a diminution in the overall rate of carbamoyl phosphate formation. Similar effects are observed upon mutation of Arg-306 and Arg-848 to alanine residues. The conserved glutamate and arginine residues may function in concert with one another to control entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate. The electrostatic environment of tunnel interior may help to stabilize the tunnel architecture and prevent decomposition of carbamate through protonation.  相似文献   

2.
【背景】氨甲酰磷酸是生物合成代谢中精氨酸与嘧啶的重要前体物质,在工业微生物生产精氨酸与嘧啶及其衍生物中发挥关键作用。【目的】在大肠杆菌Escherichia coli BW25113中比较氨甲酰磷酸不同合成途径的催化效率。【方法】在大肠杆菌Escherichia coli BW25113中过表达鸟氨酸氨甲酰基转移酶(OTC)的基础上,分别过表达大肠杆菌自身的氨基甲酸激酶(CK)和氨甲酰磷酸合酶(CPSⅡ)并表征其反应效果。通过优化底物供应(调整底物浓度与引入L-谷氨酰胺合成酶)对CK与CPSⅡ的催化反应进行优化。【结果】在大肠杆菌中过表达OTC,建立细胞水平氨甲酰磷酸检测体系。在此基础上比较不同来源的CK,发现大肠杆菌来源的CK效果最好,50mmol/LNH4HCO3条件下全细胞催化9h得到2.95±0.15mmol/LL-瓜氨酸;过表达CPSⅡ时,50mmol/LL-谷氨酰胺催化9h得到3.16±0.29 mmol/L L-瓜氨酸。通过改变底物NH4HCO3浓度和引入外源L-谷氨酰胺合成酶(GS)等方式对CK与CPSⅡ的催化反应分别进行优化后,100 mmol/L NH4HCO3条件下,L-瓜氨酸浓度分别提高至4.67±0.55mmol/L和6.12±0.38mmol/L,且过表达GS后CPSⅡ途径可以利用NH3,不需要额外添加L-谷氨酰胺。【结论】引入L-谷氨酰胺合成酶后的CPSⅡ途径合成氨甲酰磷酸的能力优于CK途径,为精氨酸、嘧啶及其衍生物的合成提供了一种更加高效的策略。  相似文献   

3.
Leflunomide is an immunomodulatory drug which acts by inhibiting dihydroorotic acid dehydrogenase, the fourth enzyme of pyrimidine biosynthesis. We modified our high-performance liquid chromatography method to demonstrate that the principal metabolite in mitogen-stimulated human T-lymphocytes incubated with leflunomide was not dihydroorotic acid, but carbamoyl aspartate. Identification involved preparation of [14C]carbamoyl aspartate from [14C]aspartic acid and mammalian aspartate transcarbamoylase. Accumulation of carbamoyl aspartate indicates that under these conditions the equilibrium constant for dihydroorotase favours the reverse reaction. This HPLC method, enabling simultaneous separation of the first four intermediates in the de novo pyrimidine pathway may be of use in a variety of experimental situations.  相似文献   

4.
The ATP-grasp fold is found in enzymes that catalyze the formation of an amide bond and occurs twice in carbamoyl phosphate synthetase. We have used site-directed mutagenesis to further define the relationship of these ATP folds to the ATP-grasp family and to probe for distinctions between the two ATP sites. Mutations at D265 and D810 severely diminished activity, consistent with consensus ATP-grasp roles of facilitating the transfer of the gamma-phosphate group of ATP. H262N was inactive whereas H807N, the corresponding mutation in the second ATP domain, exhibited robust activity, suggesting that these residues were not involved in the ATP-grasp function common to both domains. Mutations at I316 were somewhat catalytically impaired and were structurally unstable, consistent with a consensus role of interaction with the adenine and/or ribose moiety of ATP. L229G was too unstable to be purified and characterized. S228A showed essentially wild-type behavior.  相似文献   

5.
Carbamoyl phosphate synthetase II encodes the first enzymic step of de novo pyrimidine biosynthesis. Carbamoyl phosphate synthetase II is essential for Toxoplasma gondii replication and virulence. In this study, we characterised the primary structure of a 28kb gene encoding Toxoplasma gondii carbamoyl phosphate synthetase II. The carbamoyl phosphate synthetase II gene was interrupted by 36 introns. The predicted protein encoded by the 37 carbamoyl phosphate synthetase II exons was a 1,687 amino acid polypeptide with an N-terminal glutamine amidotransferase domain fused with C-terminal carbamoyl phosphate synthetase domains. This bifunctional organisation of carbamoyl phosphate synthetase II is unique, so far, to protozoan parasites from the phylum Apicomplexa (Plasmodium, Babesia, Toxoplasma) or zoomastigina (Trypanosoma, Leishmania). Apicomplexan parasites possessed the largest carbamoyl phosphate synthetase II enzymes due to insertions in the glutamine amidotransferase and carbamoyl phosphate synthetase domains that were not present in the corresponding gene segments from bacteria, plants, fungi and mammals. The C-terminal allosteric regulatory domain, the carbamoyl phosphate synthetase linker domain and the oligomerisation domain were also distinct from the corresponding domains in other species. The novel C-terminal regulatory domain may explain the lack of activation of Toxoplasma gondii carbamoyl phosphate synthetase II by the allosteric effector 5-phosphoribosyl 1-pyrophosphate. Toxoplasma gondii growth in vitro was markedly inhibited by the glutamine antagonist acivicin, an inhibitor of glutamine amidotransferase activity typically associated with carbamoyl phosphate synthetase II, guanosine monophosphate synthetase, or CTP synthetase.  相似文献   

6.
7.
New treatments need to be developed for the significant human diseases of toxoplasmosis and malaria to circumvent problems with current treatments and drug resistance. Apicomplexan parasites causing these lethal diseases are deficient in pyrimidine salvage, suggesting that selective inhibition of de novo pyrimidine biosynthesis can lead to a severe loss of uridine 5′-monophosphate (UMP) and thymidine 5′-monophosphate (dTMP) pools, thereby inhibiting parasite RNA and DNA synthesis. Disruption of Toxoplasma gondii carbamoyl phosphate synthetase II (CPSII) induces a severe uracil auxotrophy with no detectable parasite replication in vitro and complete attenuation of virulence in mice. Here we show that a CPSII cDNA minigene efficiently complements the uracil auxotrophy of CPSII-deficient mutants, restoring parasite growth and virulence. Our complementation assays reveal that engineered mutations within, or proximal to, the catalytic triad of the N-terminal glutamine amidotransferase (GATase) domain inactivate the complementation activity of T. gondii CPSII and demonstrate a critical dependence on the apicomplexan CPSII GATase domain in vivo. Surprisingly, indels present within the T. gondii CPSII GATase domain as well as the C-terminal allosteric regulatory domain are found to be essential. In addition, several mutations directed at residues implicated in allosteric regulation in Escherichia coli CPS either abolish or markedly suppress complementation and further define the functional importance of the allosteric regulatory region. Collectively, these findings identify novel features of T. gondii CPSII as potential parasite-selective targets for drug development.  相似文献   

8.
The presence of carbamoyl phosphate synthetase III (CPSase III), catalyzing the first step of the urea cycle in fish, in Atlantic halibut (Hippoglossus hippoglossus L.) yolk-sac larvae and adult white muscle has been established using gel filtration chromatography to separate the CPSase III from the pyrimidine-pathway related CPSase II. The results are consistent with the hypothesis that teleostean fish express urea cycle enzymes during early development and with recent observations of low levels of CPSase III in muscle tissue. The presence of CPSase III in crude extracts could not be established using sensitive assay conditions to discriminate between CPSase III and CPSase II. However, kinetic characterization after chromatographic separation identified each as typical CPSase II and CPSase III activities, respectively. The CPSase III was less sensitive to activation by N-acetyl- -glutamate and had a higher Km for ammonia than CPSase III found in other species. These results suggest that precise quantitation of low levels of CPSase III in the presence of CPSase II by assaying crude extracts may be difficult unless the enzymes are first separated and the kinetic properties of CPSase III are determined; the results indicate that assaying larval extracts of Atlantic halibut in the presence of uridine triphosphate results in CPSase activity that reflects mostly CPSase III and can, therefore, be used to measure changes in CPSase III activity.  相似文献   

9.
Carbamoyl phosphate synthetase synchronizes the utilization of two ATP molecules at duplicated ATP-grasp folds to catalyze carbamoyl phosphate formation. To define the dedicated functional role played by each of the two ATP sites, we have carried out pulse/labeling studies using the synthetases from Aquifex aeolicus and Methanococcus jannaschii, hyperthermophilic organisms that encode the two ATP-grasp folds on separate subunits. These studies allowed us to differentially label each active site with [gamma-(32)P]ATP and determine the fate of the labeled gamma-phosphate in the synthetase reaction. Our results provide the first direct demonstration that enzyme-catalyzed transfer of phosphate from ATP to carbamate occurs on the more C-terminal of the two ATP-grasp folds. These findings rule out one mechanism proposed for carbamoyl phosphate synthetase, where one ATP acts as a molecular switch, and provide additional support for a sequential reaction mechanism where the gamma-phosphate groups of both ATP molecules are transferred to reactants. CP synthesis by subunit C in our single turnover pulse/chase assays did not require subunit N, but subunit N was required for detectable CP synthesis in the traditional continuous assay. These findings suggest that cross-talk between domain N and C is required for product release from subunit C.  相似文献   

10.
The standard Gibbs energies of formation of species in the guanosine triphosphate and the xanthosine triphosphate series have been calculated on the basis of the convention that the standard Gibbs energy of formation for the neutral form of guanosine is equal to zero in aqueous solution at 298.15 K and zero ionic strength. This makes it possible to calculate apparent equilibrium constants for a number of enzyme-catalyzed reactions for which apparent equilibrium constants have not been measured or cannot be measured directly because they are too large. The eventual elimination of this convention is discussed. This adds ten reactants to the database BasicBiochemData3 that has 199 reactants. The standard transformed Gibbs energies of formation of these ten reactants are used to calculate apparent equilibrium constants at 298.15 K, 0.25 M ionic strength, and pHs 5, 6, 7, 8, and 9. The pKs, standard Gibbs energies of hydrolysis, and standard Gibbs energies of deamination are given for the reactants in the ATP, IMP, GTP, and XTP series.  相似文献   

11.
Ornithine is an allosteric activator of carbamoyl phosphate synthetase (CPS) from Escherichia coli. Nine amino acids in the vicinity of the binding sites for ornithine and potassium were mutated to alanine, glutamine, or lysine. The residues E783, T1042, and T1043 were found to be primarily responsible for the binding of ornithine to CPS, while E783 and E892, located within the carbamate domain of the large subunit, were necessary for the transmission of the allosteric signals to the active site. In the K loop for the binding of the monovalent cation potassium, only E761 was crucial for the exhibition of the allosteric effects of ornithine, UMP, and IMP. The mutations H781K and S792K altered significantly the allosteric properties of ornithine, UMP, and IMP, possibly by modifying the conformation of the K-loop structure. Overall, these mutations affected the allosteric properties of ornithine and IMP more than those of UMP. The mutants S792K and D1041A altered the allosteric regulation by ornithine and IMP in a similar way, suggesting common features in the activation mechanism exhibited by these two effectors.  相似文献   

12.
In this study, molecularly imprinted polymers (MIPs) prepared using a multifunctional and a monofunctional monomer were compared with respect to their affinities, selectivities, and imprinting efficiencies for organophosphates. This is of interest because multifunctional monomers have higher affinities than traditional monofunctional monomers for their target analytes and thus should yield MIPs with higher affinities and selectivities. However, polymers containing multifunctional monomer may also have a higher number of unselective, non-templated binding sites. This increase in background binding sites could lead to a decrease in the magnitude of the imprinting effect and in the selectivity of the MIP. Therefore, phosphate selective imprinted and non-imprinted polymers (NIPs) were prepared using a novel multifunctional triurea monomer. The binding properties of these polymers were compared with polymers prepared using a monofunctional monourea monomer. The binding affinities and selectivities of the monomers, imprinted polymers, and NIPs were characterized by NMR titration, binding uptake studies, and binding isotherms. MIPs prepared with the triurea monomer showed higher binding affinity and selectivity for the diphenylphosphate anion in organic solvents than the MIPs prepared with the monofunctional monomer. Surprisingly, the binding properties of the NIPs revealed that the polymers prepared using the multifunctional and monofunctional monomers were very similar in affinity and selectivity. Thus, the multifunctional monomers increase not only the affinity of the MIP but also enhance the imprinting effect.  相似文献   

13.
The catalytic activity of carbamoyl phosphate synthetase (CPS) from Escherichia coli is allosterically regulated by UMP, IMP, and ornithine. Thirteen amino acids within the domain that harbors the overlapping binding sites for IMP and UMP were mutated to alanine and characterized. The four residues that interact directly with the phosphate moiety of IMP in the X-ray crystal structure (K954, T974, T977, and K993) were shown to have the greatest impact on the dissociation constants for the binding of IMP and UMP and the associated allosteric effects on the kinetic constants of CPS. Of the four residues that interact with the ribose moiety of IMP (S948, N1015, T1017, and S1026), S1026 was shown to be more important for the binding of IMP than UMP. Five residues (V994, I1001, D1025, V1028, and I1029) were mutated in the region of the allosteric domain that surrounds the hypoxanthine ring of IMP. With the exception of V994A, these mutations had a modest influence on the binding and subsequent allosteric effects by UMP and IMP.  相似文献   

14.
Monoclonal antibody HTP IV-#1 specifically recognizes a complexation-dependent neoepitope on bone acidic glycoprotein-75 (BAG-75) and a Mr = 50 kDa fragment. Complexes of BAG-75 exist in situ, as shown by immunofluorescent staining of the primary spongiosa of rat tibial metaphysis and osteosarcoma cell micromass cultures with monoclonal antibody HTP IV-#1. Incorporation of BAG-75 into complexes by newborn growth plate and calvarial tissues was confirmed with a second, anti-BAG-75 peptide antibody (#503). Newly synthesized BAG-75 immunoprecipitated from mineralizing explant cultures of bone was present entirely in large macromolecular complexes, while immunoprecipitates from monolayer cultures of osteoblastic cells were previously shown to contain only monomeric Mr = 75 kDa BAG-75 and a 50 kDa fragment. Purified BAG-75 self-associated in vitro to form large spherical aggregate structures composed of a meshwork of 10 nm diameter fibrils. These structures have the capacity to sequester large amounts of phosphate ions as evidenced by X-ray microanalysis and by the fact that purified BAG-75 preparations, even after extensive dialysis against water, retained phosphate ions in concentrations more than 1,000-fold higher than can be accounted for by exchange calculations or by electrostatic binding. The ultrastructural distribution of immunogold-labeled BAG-75 in the primary spongiosa underlying the rat growth plate is distinct from that for other acidic phosphoproteins, osteopontin and bone sialoprotein. We conclude that BAG-75 self-associates in vitro and in vivo into microfibrillar complexes which are specifically recognized by monoclonal antibody HTP IV-#1. This propensity to self-associate into macromolecular complexes is not shared with acidic phosphoproteins osteopontin and bone sialoprotein. We hypothesize that an extracellular electronegative network of macromolecular BAG-75 complexes could serve an organizational role in forming bone or as a barrier restricting local diffusion of phosphate ions. J. Cell. Biochem. 64:547–564. © 1997 Wiley-Liss, Inc.  相似文献   

15.
This contribution focuses the reader's attention on the pitfalls usually emerging during the phase of evaluation of experimental data of drug-protein binding studies. To overcome the occurrence of problem(s) apparently defying solution, the concept of "affinity spectra" is recommended to be implemented for data evaluation. A (general) "binding study protocol" is also suggested, which can prevent the formation of inadequate conclusions and the generation of unrealistic drug-protein binding parameters.  相似文献   

16.
New water-soluble chitin derivatives, chitin phosphate of various degrees of substitution, were successfully prepared by the reaction of chitin with phosphorus pentoxide in methanesulphonic acid. These materials behaved hydrodynamically as typical polyelectrolyte, and showed high ability to adsorb metal ions.  相似文献   

17.
Previous studies have demonstrated that the vitamin pyridoxal phosphate can alter the physicochemical properties of glucocorticoid receptors. We now report the localization of a pyridoxal phosphate binding site within the mero-receptor domain of this glucocorticoid receptor. Mero-glucocorticoid receptors that are generated by trypsin (10 μg/ml) or chymotrypsin (100 μg/ml) digestion of intact receptors sediment as 2.6 S species on 5–20% sucrose gradients in the presence or absence of pyridoxal phosphate. Mero-glucocoritcoid receptors prepared by exogenous proteinases are hydrophobic and show no affinity for DEAE Bio-Gel A. Treating either trypsin-generated or chymotrypsin-generated mero-receptors with pyridoxal phosphate rapidly converts the proteins (60 and 35%, respectively) into forms that bind to DEAE Bio-Gel A. Induction of DEAE binding is specific to pyridoxal phosphate, for treating mero-receptors with pyridoxal, pyridoxamine or pyridoxine phosphate is ineffective. Furthermore, DEAE binding cannot be induced by adding other pyridoxal phosphate-treated cytosols to untreated mero-receptors. High-resolution polyacrylamide gel isoelectric focussing studies indicated that treating mero-receptor generated by either proteinase with pyridoxal phosphate shifted the isoelectric points of lower pH values. The conversion of the mero-receptor to a more acidic form also occurred when the intact glucocorticoid receptor was treated with the vitamin prior to proteolysis. These studies localize at least one pyridoxal phosphate binding site on the mero-receptor domain of the rat thymocyte glucocorticoid receptor.  相似文献   

18.
Ribokinase and adenosine kinase are both members of the PfkB family of carbohydrate kinases. The activity of mammalian adenosine kinase was previously shown to be affected by pentavalent ions (PVI). We now present evidence that the catalytic activity of E. coli ribokinase is also affected by PVI, increasing both the velocity and affinity of the enzyme for d-ribose. The Km for ribose decreased from 0.61 mM to 0.21, 0.25, and 0.33 mM in the presence of 20 mM phosphate, arsenate, and vanadate, respectively. The activity of ribokinase was stimulated in a hyperbolic fashion, with the maximum velocity increasing 23-fold, 13-fold, and 11-fold under the same conditions, respectively. Activity was also affected upon the addition of phosphoenolpyruvate, suggesting that phosphorylated metabolites could be involved in enzymatic control. The similar effect of PVI on distantly related enzymes suggests that a common mechanism for activity is shared among PfkB family members.  相似文献   

19.
Mammalian glutamine-dependent carbamoyl phosphate synthetase (EC 2.7.2.9), the first enzyme of de novo pyrimidine nucleotide biosynthesis, was strongly inhibited by polyamines at concentrations of 10?4 to 10?3 M. Spermine was the most effective, followed in order by spermidine and putrescine. The inhibition was partially reversed by increasing the concentration of Mg2+ or MgATP2?, or by adding low concentrations of 5-phosphoribosyl 1-pyrophosphate, an allosteric activator of the enzyme. Polyamines increased the apparent Ka value of the enzyme for phosphoribosyl pyrophosphate. A possible physiological role of polyamines in widening the range of the effective concentrations of phosphoribosyl pyrophosphate as the activator for the enzyme is suggested.  相似文献   

20.
H-N-H is a motif found in the nuclease domain of a subfamily of bacteria toxins, including colicin E7, that are capable of cleaving DNA nonspecifically. This H-N-H motif has also been identified in a subfamily of homing endonucleases, which cleave DNA site specifically. To better understand the role of metal ions in the H-N-H motif during DNA hydrolysis, we crystallized the nuclease domain of colicin E7 (nuclease-ColE7) in complex with its inhibitor Im7 in two different crystal forms, and we resolved the structures of EDTA-treated, Zn(2+)-bound and Mn(2+)-bound complexes in the presence of phosphate ions at resolutions of 2.6 A to 2.0 A. This study offers the first determination of the structure of a metal-free and substrate-free enzyme in the H-N-H family. The H-N-H motif contains two antiparallel beta-strands linked to a C-terminal alpha-helix, with a divalent metal ion located in the center. Here we show that the metal-binding sites in the center of the H-N-H motif, for the EDTA-treated and Mg(2+)-soaked complex crystals, were occupied by water molecules, indicating that an alkaline earth metal ion does not reside in the same position as a transition metal ion in the H-N-H motif. However, a Zn(2+) or Mn(2+) ions were observed in the center of the H-N-H motif in cases of Zn(2+) or Mn(2+)-soaked crystals, as confirmed in anomalous difference maps. A phosphate ion was found to bridge between the divalent transition metal ion and His545. Based on these structures and structural comparisons with other nucleases, we suggest a functional role for the divalent transition metal ion in the H-N-H motif in stabilizing the phosphoanion in the transition state during hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号