首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many diurnal bird species vocalize at night, however the function of nocturnal song is, generally, still poorly understood. Previous research has suggested that nocturnal song may serve a social function and is influenced by environmental factors. To test whether males attend to the nocturnal song of conspecifics, we experimentally exposed ovenbirds Seiurus aurocapilla to nocturnal flight songs, and recorded their response both during the night and during the following dawn chorus. We compared latency to song and vocal output before and after playback exposure to determine if males altered their vocalizations in response to exposure to flight songs from an unknown male. We found no evidence of counter singing or change in nocturnal song output, nor a change in vocal output during the dawn chorus following playback exposure. Our results suggest that, in ovenbirds, nocturnal song does not serve as an intraspecific social function. Nocturnal song, through rare, may be significant in the mating systems of some diurnal bird species, and requires additional study.  相似文献   

2.
House mice emit ultrasonic vocalizations (USVs) during courtship, which are sexually dimorphic and function to attract mates. Spectrographic analyses of laboratory mice show that USVs are surprisingly complex and have features of song. In this study, we conducted the first spectral and temporal analyses of recordings from wild house mice (F1 from wild-caught Mus musculus musculus). Inspection of the spectral shape of syllables shows that the USVs from wild mice can be classified by both frequency and duration, and the most apparent distinction is between low- versus high-frequency calls. High-frequency calls of wild mice seem to be emitted at a much higher frequency range than previously found in some laboratory mice. Interestingly, we found that 20% of males do not vocalize at all, though the reason for their behaviour is unclear. Future studies are needed to determine what kind of information is conveyed in these complex vocalizations, and why some males appear to be non-vocalizers.  相似文献   

3.
Black‐capped chickadees have a rich vocal repertoire including learned calls and the learned fee‐bee song. However, the neural regions underlying these vocalizations, such as HVC, area X, and RA (robust nucleus of arcopallium), remain understudied. Here, we document seasonal changes in fee‐bee song production and show a marked peak in singing rate during March through May. Despite this, we found only minimal seasonal plasticity in vocal control regions of the brain in males. There was no significant effect of time of year on the size of HVC, X, or RA in birds collected in January, April, July, and October. We then pooled birds into two groups, those with large testes (breeding condition) and those with small testes (nonbreeding), regardless of time of year. Breeding birds had slightly larger RA, but not HVC or X, than nonbreeding birds. Breeding birds had slightly larger HVC and RA, but not X, as a proportion of telencephalon volume than did nonbreeding birds. Birds collected in July had heavier brains than birds at other times of year, and had the greatest loss in brain mass during cryoprotection. The absence of any overall seasonal change in the vocal‐control regions of chickadees likely results from a combination of individual differences in the timing of breeding phenology and demands on the vocal‐control regions to produce learned calls year‐round. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

4.
Vocal learning has evolved in only a few groups of mammals and birds. The developmental and evolutionary origins of vocal learning remain unclear. The imitation of a memorized sound is a clear example of vocal learning, but is that when vocal learning starts? Here we use an ontogenetic approach to examine how vocal learning emerges in a songbird, the chipping sparrow. The first vocalizations of songbirds, food begging calls, were thought to be innate, and vocal learning emerges later during subsong, a behavior reminiscent of infant babbling. Here we report that the food begging calls of male sparrows show several characteristics associated with learned song: male begging calls are highly variable between individuals and are altered by deafening; the production of food begging calls induces c-fos expression in a forebrain motor nucleus, RA, that is involved with the production of learned song. Electrolytic lesions of RA significantly reduce the variability of male calls. The male begging calls are subsequently incorporated into subsong, which in turn transitions into recognizable attempts at vocal imitation. Females do not sing and their begging calls are not affected by deafening or RA lesion. Our results suggest that, in chipping sparrows, intact hearing can influence the quality of male begging calls, auditory-sensitive vocal variability during food begging calls is the first step in a modification of vocal output that eventually culminates with vocal imitation.  相似文献   

5.
Black‐capped chickadees (Poecile atricapillus) and mountain chickadees (P. gambeli) have a similar vocal repertoire and share many other life history traits; yet, black‐capped chickadees are socially dominant to mountain chickadees where populations overlap. Previous research suggested that in contact zones, both species respond weakly to heterospecific songs during the breeding season, and have suggested minimal interspecific competition. However, both black‐capped and mountain chickadees discriminate between conspecific and heterospecific chick‐a‐dee calls, suggesting attention is paid to interspecific signals. We compared the responses of both black‐capped and mountain chickadees to conspecific and heterospecific chick‐a‐dee calls during the winter, when both species compete for the same food resources. We conducted an aviary playback experiment exposing both species to playback composed of heterospecific and conspecific chick‐a‐dee calls, which had been recorded in the context of finding food sources. Responses from the tested birds were measured by recording vocalizations and behaviour. Black‐capped chickadees responded significantly more to conspecific than to heterospecific stimuli, whereas the subordinate mountain chickadees responded to both mountain and black‐capped chickadee calls. Based upon the reactions to playbacks, our results suggest these two closely related species may differ in their perception of the relative threat associated with intra‐ versus interspecific competitors.  相似文献   

6.
Species recognition is essential for efficient communication between conspecifics. For this to occur, species information must be unambiguously encoded in the repertoire of each species’ vocalizations. Until now, the study of species recognition in songbirds has been focused mainly on male songs and male territorial behaviour. Species recognition of other learned vocalizations, such as calls, have not been explored, and could prove useful as calls are used in a wider range of contexts. Here, we present an experimental field study investigating the coding of species information in a learned vocalization, the ‘chick-a-dee’ call of the black-capped chickadee (Poecile atricapillus). By modifying natural calls in both temporal and spectral domains and by observing the vocal responses of black-capped chickadees following the playback of these modified calls, we demonstrate that species recognition in chickadees relies on several acoustic features including syntax, frequency modulation, amplitude modulation, and to a lesser extent, call rhythmicity and frequency range.  相似文献   

7.
Studying seasonal changes in the vocal activity of birds may shed light on the function of avian vocalizations and the phenology of life history events. Our current knowledge regarding the seasonality of the vocal behaviour of tropical birds in general, and avian brood parasites in particular, is very limited. Here, we employed passive acoustic monitoring with automated signal recognition to monitor the vocal behaviour of the Striped Cuckoo Tapera naevia over a complete annual cycle in the Brazilian Pantanal. We evaluated whether the pattern of vocal activity differed between the two main vocalizations of the species (sem-fim and wee-series songs) and whether vocal activity varied with time of day and season. The diel pattern of vocal activity for both vocalization types showed a bimodal pattern, with the first peak of vocal activity in the few hours after sunrise and the second peak before sunset, in agreement with prior studies in other cuckoos. The sem-fim song was also produced during the night, while the wee-series song was produced only during the day. Both vocalization types showed clear seasonality and were produced between mid-June and mid-February. Seasonal changes in vocal activity suggest that the Striped Cuckoo breeds during the dry season and leaves the study area during the flooding period. The seasonal pattern of the wee-series song showed strong seasonality, with 90% of these calls detected in September and October, whereas the sem-fim song showed weaker seasonality, with 80% of the calls detected during the July–October period. Our study indicates that automated signal recognition might be a reliable tool for monitoring cuckoos. Further research could evaluate whether the different seasonal patterns of the sem-fim and wee-series songs of the Striped Cuckoo are related to different functions.  相似文献   

8.
In the majority of songbird species, males have repertoires of multiple song types used for mate attraction and territory defence. The wood‐warblers (family Parulidae) are a diverse family of songbirds in which males of many migratory species use different song types or patterns of song delivery (known as ‘singing modes’) depending on context. The vocal behaviour of most tropical resident warblers remains undescribed, although these species differ ecologically and behaviourally from migratory species, and may therefore differ in their vocal behaviour. We test whether male Rufous‐capped Warblers Basileuterus rufifrons use distinct singing modes by examining song structure and context‐dependent variation in their songs. We recorded multiple song bouts from 50 male Warblers in a Costa Rican population over 3 years to describe seasonal, diel and annual variation in song structure and vocal behaviour. We found that Rufous‐capped Warbler songs are complex, with many syllable types shared both within and between males’ repertoires. Males varied their song output depending on context: they sang long songs at a high rate at dawn and during the breeding season, and shortened songs in the presence of a vocalizing female mate. Unlike many migratory species, Rufous‐capped Warblers do not appear to have different singing modes; they did not change the song variants used or the pattern of song delivery according to time of day, season or female vocal activity. Our research provides the first detailed vocal analysis of any Basileuterus warbler species, and enhances our understanding of the evolution of repertoire specialization in tropical resident songbirds.  相似文献   

9.
10.
The study compared the responsiveness of a captive male Mueller's gibbon to audio recordings of dawn songs of wild-living male Mueller's gibbons and lar gibbons, and to a synthetic song constructed from screech owl vocalizations. Though wild-caught, the subject had not been exposed to songs of his own species for at least 10 years, and in fact, only rarely performed the dawn song himself. Initially, the subject responded vigorously to all three recordings, with no preference being shown for the recording of his own species. However, a very strong preference for Mueller's vocalizations did develop following a period of concentrated and exclusive exposure to Mueller's songs.  相似文献   

11.
Patterns of vocal activity may involve information about vocalizations themselves as well as their function. In birds, vocal activity at the individual and population level is generally closely associated with breeding cycles, reaching the peak during territorial and mating competition, and decreasing with the onset of egg incubation and chick feeding. However, little is known about patterns of vocal activity in avian brood parasites that have unusual breeding cycles without parental care. Using passive acoustic monitoring, we determined the seasonal and diurnal patterns of population vocal activity in two avian brood parasites: the Common Cuckoo Cuculus canorus and the Lesser Cuckoo C. poliocephalus. We found that both species and both sexes showed a similarly highly structured pattern of seasonal vocal activity, reaching a sharp peak in the early breeding season when birds compete for territories and mates, although males sang more frequently than females. Likewise, the diurnal patterns of vocal activity were similar in both species and both sexes of cuckoos, with peak activity occurring around dawn. Nocturnal calls by male cuckoos were also detected in both species, but only in the early breeding season. Collectively, the observed patterns of population vocal activity may suggest that the absence of parental care may not extend the period of vocal activity in these two species of brood parasites.  相似文献   

12.
Charles Darwin posited that secondary sexual characteristics result from competition to attract mates. In male songbirds, specialized vocalizations represent secondary sexual characteristics of particular importance because females prefer songs at specific frequencies, amplitudes, and duration. For birds living in human-dominated landscapes, historic selection for song characteristics that convey fitness may compete with novel selective pressures from anthropogenic noise. Here we show that black-capped chickadees (Poecile atricapillus) use shorter, higher-frequency songs when traffic noise is high, and longer, lower-frequency songs when noise abates. We suggest that chickadees balance opposing selective pressures by use low-frequency songs to preserve vocal characteristics of dominance that repel competitors and attract females, and high frequency songs to increase song transmission when their environment is noisy. The remarkable vocal flexibility exhibited by chickadees may be one reason that they thrive in urban environments, and such flexibility may also support subsequent genetic adaptation to an increasingly urbanized world.  相似文献   

13.
14.
For songbirds, experience with conspecific vocalizations during development is important for the ontogeny of both production of vocalizations and perceptual abilities in young oscines. We examined the effects of reduced experience with conspecific vocalizations during development on two auditory perceptual tasks: discrimination of distance cues and discrimination between individual vocalizations in black-capped chickadees, Poecile atricapillus. Discrimination of distance cues was nearly identical in field- and isolate-reared chickadees, but the capacity for memorization of numbers of individual vocalizations was lower in isolate-reared chickadees. We conclude that discrimination of distance cues, and thus distance perception, is probably not learned through experience but is an innate skill. We also conclude that discrimination between many individual vocalizations, a task demanding memorization, is aided by early experience with conspecific vocalizations.Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

15.
Songbirds are one of the few groups of animals that learn the sounds used for vocal communication during development. Like humans, songbirds memorize vocal sounds based on auditory experience with vocalizations of adult “tutors”, and then use auditory feedback of self-produced vocalizations to gradually match their motor output to the memory of tutor sounds. In humans, investigations of early vocal learning have focused mainly on perceptual skills of infants, whereas studies of songbirds have focused on measures of vocal production. In order to fully exploit songbirds as a model for human speech, understand the neural basis of learned vocal behavior, and investigate links between vocal perception and production, studies of songbirds must examine both behavioral measures of perception and neural measures of discrimination during development. Here we used behavioral and electrophysiological assays of the ability of songbirds to distinguish vocal calls of varying frequencies at different stages of vocal learning. The results show that neural tuning in auditory cortex mirrors behavioral improvements in the ability to make perceptual distinctions of vocal calls as birds are engaged in vocal learning. Thus, separate measures of neural discrimination and behavioral perception yielded highly similar trends during the course of vocal development. The timing of this improvement in the ability to distinguish vocal sounds correlates with our previous work showing substantial refinement of axonal connectivity in cortico-basal ganglia pathways necessary for vocal learning.  相似文献   

16.
A few animal species are capable of vocal learning. Parrots are well known for their vocal imitation abilities. In this study, we investigated whether African grey parrots (Psittacus erithacus) emit specific vocalizations in specific contexts. We first described the vocal repertoire and its ontogenesis of four captive grey parrots. After a comparison with vocalizations emitted by wild and other captive African grey parrots, we observed that only three call categories were shared by all grey parrots populations, suggesting that isolated populations of parrots develop population-specific calls. Then, we artificially provoked ten different contexts and recorded vocalizations of four captive grey parrots in these situations. Parrots predominantly emitted call categories in some contexts: distress, protestation, alarm, asking (i.e. emitted when a bird wanted something from an experimenter) and contact calls. These results suggest that some calls are learned and can be used in specific contexts.  相似文献   

17.
Vocal learning in songbirds and humans occurs by imitation of adult vocalizations. In both groups, vocal learning includes a perceptual phase during which juveniles birds and infants memorize adult vocalizations. Despite intensive research, the neural mechanisms supporting this auditory memory are still poorly understood. The present functional MRI study demonstrates that in adult zebra finches, the right auditory midbrain nucleus responds selectively to the copied vocalizations. The selective signal is distinct from selectivity for the bird''s own song and does not simply reflect acoustic differences between the stimuli. Furthermore, the amplitude of the selective signal is positively correlated with the strength of vocal learning, measured by the amount of song that experimental birds copied from the adult model. These results indicate that early sensory experience can generate a long-lasting memory trace in the auditory midbrain of songbirds that may support song learning.  相似文献   

18.
Song development and song pattern formation in oscine songbirds are influenced by steroid hormones such as estrogens and androgens, and the control of vocal pattern generation is mediated via a network of interconnected vocal and respiratory nuclei. The main components of the respiratory part of the network are the expiratory and inspiratory premotor nuclei, known as retroambigualis (RAm) and the rostral ventral respiratory group (rVRG), respectively. These respiratory components play an integral role in song production either by providing the expiratory pulses of air required for each and every song syllable, or by controlling inspiration between syllables in the form of minibreaths, and between phrases for major replenishments of air. Here we analyze the distribution of androgen receptors (AR) and estrogen receptors (ER) in the midbrain and hindbrain of male and female zebra finches, and male canaries and green finches, using in situ hybridization with cRNA probes of the zebra finch AR and ER. ERmRNA was not expressed in any of the respiratory-vocal nuclei of the midbrain or hindbrain, but ARmRNA was expressed in the tracheosyringeal motor nucleus (nXIIts) and in RAm and rVRG. The size of the ARmRNA defined RAm and rVRG was similar in male and female zebra finches, but the size of ARmRNA defined nXIIts was slightly sexual dimorphic. Previously undescribed areas of ARmRNA expression outside the respiratory-vocal network in the brain stem were the nucleus semilunaris and layers 10–12 of the optic tectum. ARmRNA expression in the respiratory-vocal nuclei of adult male songbirds, adult female zebra finches, and juvenile zebra finches suggests that the temporal pattern of learned and unlearned vocalizations is sensitive to androgen-dependent mechanisms mediated by RAm and rVRG. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 865–876, 1997  相似文献   

19.
Bloomfield and Sturdy [Bloomfield, L.L., Sturdy, C.B. All chick-a-dee calls are not created equally. Part I. Open-ended categorization by sympatric and allopatric chickadees. Behav. Proc., in press] previously reported that black-capped chickadees (Poecile atricapillus) discriminate conspecific from heterospecific (mountain chickadee, P. gambeli) 'chick-a-dee' calls, and their ability to accurately discriminate and classify the calls as belonging to separate species' defined categories was largely unaffected by their prior experience with mountain chickadees and their calls. To further examine the potential influence of experience on discrimination and categorization, we compare wild-caught black-capped chickadees, wild-caught mountain chickadees, and black-capped chickadees hand-reared among either adult laboratory-housed black-capped chickadees or adult laboratory-housed mountain chickadees on a true category/pseudo category chick-a-dee call discrimination task. Irrespective of group assignment, hand-reared birds performed as well as wild-caught birds and did not show a conspecific- or rearing-specific advantage in discrimination, categorization or memorization of chick-a-dee calls. While vocal learning is under the influence of ontogenetic experience, the results derived from the current methods suggest that experience (or a lack thereof) does not affect categorization and memorization abilities.  相似文献   

20.
ABSTRACT

Knowledge of the vocalizations of Afrotropical birds is very limited and many problems exist. Seasonality of vocal activity has not been properly researched in the context of potential variability in the times of breeding. The different types of duetting and chorus singing, as exemplified by the African barbets, Capitonidae, need to be studied to correct the over-generalized treatment of this subject. Fuller information is required about geographic variation of those vocalizations which there is a tendency to use as criteria for taxonomic separation of species. Other problems which invite more research are mimicry, nocturnal and diurnal song, the extent of species' repertoires of calls, and vocalizations during breeding activities. There is an urgent need for more studies to be made of the vocal behaviour of birds in Africa where threats to the habitats are increasing so rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号