首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of elevated intracellular cyclic AMP on the release of neurotransmitters was studied using the clonal pheochromocytoma cell line, PC12, and forskolin, a direct activator of adenylate cyclase. Intracellular cyclic AMP concentrations ranging from 8 to 400 times basal levels were achieved with 0.1 to 100 uM forskolin. Unstimulated release of neurotransmitters was unchanged by any concentration of forskolin. However, K+-stimulated release of both norepinephrine (NE) and acetylcholine was enhanced by 0.1 to 10 uM forskolin. Release of NE elicited by depolarization with carbachol and veratridine also was enhanced by 1 uM forskolin. Enhancement of release was reversed by higher concentrations of forskolin, especially in the presence of a phosphodiesterase inhibitor (RO 20-1724) which caused very large increases in cyclic AMP content. The enhancement of transmitter release from the PC12 cells occurred without concomitant changes in agonist-stimulated ion flux through the acetylcholine receptor ion channel, or in depolarization-dependent uptake of 45Ca++. Thus, increasing the cyclic AMP content of PC12 cells fails to initiate neurosecretion but appears to facilitate some element in the secretion process subsequent to Ca++ influx.  相似文献   

2.
1. The calcium-dependent K+-evoked release of [3H]norepinephrine from guinea pig cerebral cortical vesicular preparations is inhibited by norepinephrine, clonidine, and epinephrine. Isoproterenol has no effect and phentolamine prevents the inhibition by norepinephrine. The results indicate that an alpha-adrenergic receptor mediates an inhibitory input to the calcium-dependent release process. The inhibition by norepinephrine is prevented by high concentrations (3.0 mM) of calcium ions. 2. A cyclic AMP phosphodiesterase inhibitor, ZK 62771, slightly elevates [3H]cyclic AMP levels in the guinea pig cerebral cortical preparation and potentiates the marked elevation of [3H]cyclic AMP elicited by the adenylate cyclase activator, forskolin. 3. Neither ZK 62771 nor forskolin alone has significant effects on K+-evoked release of [3H]norepinephrine from the cerebral cortical vesicular preparation; however, a combination of ZK 62771 and forskolin inhibits K+-evoked release by as much as 60%. The inhibition is reversed by high concentrations (2.0 mM) of calcium ions. The results suggest that a marked accumulation of cyclic AMP elicited via both activation of adenylate cyclase and inhibition of phosphodiesterase can be inhibitory to neurotransmitter release from central synaptic terminals.  相似文献   

3.
In addition to the somatodendritic region, myenteric motoneuron terminals are endowed with nicotinic autoreceptors. We aimed at investigating the effect of nicotinic receptor (nAChR) activation on [3H]-acetylcholine ([3H]-ACh) release from longitudinal muscle-myenteric plexus of the rat ileum and to evaluate whether this could be modulated by adenosine, an endogenous neuromodulator typically operating changes in intracellular cyclic AMP. The nAChR agonist, 1,1-dimethyl-4-phenylpiperazinium (DMPP, 1-30 microM, 3 min) increased [3H]-ACh release in a concentration-dependent manner. DMPP (30 microM)-induced [3H]-ACh outflow was attenuated by hexamethonium (0.1-1 mM), tubocurarine (1-5 microM), or by removing external Ca2+ (plus EGTA, 1 mM). In contrast to veratridine (0.2-10 microM)-induced [3H]-ACh release, the DMPP (30 microM)-induced outflow was resistant to tetrodotoxin (1 microM) and cadmium (0.5 mM). Pretreatment with adenosine deaminase (0.5 U/mL) or with the adenosine A(2A)-receptor antagonist, ZM 241385 (50 nM), enhanced nAChR-induced transmitter release. Activation of A(2A) receptors with CGS 21680C (3 nM) reduced the DMPP-induced release of [3H]-ACh. CGS 21680C (3 nM) inhibition was prevented by MDL 12,330A (10 microM, an adenylate cyclase inhibitor) and by H-89 (10 microM, an inhibitor of protein kinase A), but was potentiated by rolipram (300 microM, a phosphodiesterase inhibitor). DMPP-induced transmitter release was decreased by 8-bromo-cyclic AMP (1 mM, a protein kinase A activator), rolipram (300 microM), and forskolin (3 microM, an activator of adenylate cyclase). Both MDL 12,330A (10 microM) and H-89 (10 microM) facilitated DMPP-induced release of [3H]-ACh. The results indicate that nAChR-induced [3H]-ACh release is triggered by the influx of Ca2+, independent of voltage-sensitive calcium channels, presumably directly through nAChRs located on myenteric axon terminals. It was also shown that endogenous adenosine, activating A(2A) receptors coupled to the adenylate cyclase/cyclic AMP transducing system, is tonically downregulating this nAChR-mediated control of [3H]-ACh release.  相似文献   

4.
Acetylcholine (ACh) increased cyclic AMP levels in cultured bovine chromaffin cells with a peak effect at 1 min after the addition. Pretreatment with forskolin (0.3 microM) enhanced the ACh-evoked cyclic AMP increase. The catecholamine (CA) release induced by ACh was enhanced by forskolin, but forskolin alone did not enhance the CA release. The effect of forskolin increased dose-dependently up to 1 microM, but decreased at higher concentrations. Dibutyryl cyclic AMP (DBcAMP) also enhanced ACh-evoked CA release, but the effect was less potent than that of forskolin. Forskolin enhanced both [3H]norepinephrine ([3H]NE) and endogenous CA release evoked by 30 mM K+ from cells that were preloaded with [3H]NE. The effects of forskolin were substantial when CA release was evoked with low concentrations of ACh or excess K+, but decreased with higher concentrations of the stimulants. Forskolin also enhanced the CA release induced by ionomycin and veratrine, or by caffeine in Ca2+-free medium. The potentiation by forskolin of the ACh-evoked CA release was manifest in low Ca2+ concentrations in the medium, but decreased when Ca2+ concentration was increased. These results suggest that cyclic AMP may play a role in the modulation of CA release from chromaffin cells.  相似文献   

5.
1. Intact mouse neuroblastoma NS20 cells, in the presence of cyclic adenosine 3':5'-monophosphate (cAMP) phosphodiesterase inhibitor, responded to adenosine (200 muM) and 2-chloroadenosine (200 muM) with a 20-fold increase in intracellular cAMP levels. AMP (200 muM) additions caused only a 3.5-fold cAMP level elevation. ATP, ADP, guanosine, cytidine, uridine, and guanine, all at 200 muM, had no effect on the cAMP level of these cells. 2. Homogenate NS20 adenylate cyclase activity was increased 2.5- to 4-fold by addition of 200 muM adenosine, 2-chloroadenosine, 2-hydroxyadenosine, or 8-methylaminoadenosine. Prostaglandin E1 additions (1.4 muM) produced about an 8-fold stimulation of homogenate cyclase activity. The Km of homogenate cyclase activation by adenosine and 2-chloroadenosine was 67.6 and 6.7 muM, respectively. Addition of 7-deazaadenosine, tolazoline, yohimbine, guanosine, cytosine, guanine, 2-deoxy-AMP, and adenine 9-beta-D-xylopyranoside, all at 200 muM were found to be without effect on homogenate NS20 adenylate cyclase. Two classes of inhibitors of homogenate NS20 adenylate cyclase activity were observed. One class, which included AMP, adenine, and theophylline, blocked 2-chloroadenosine but not prostaglandin E1 stimulation of cyclase. Theophylline was shown to be a competitive inhibitor of 2-chloroadenosine, with a Ki of 35 muM. The second class of inhibitors, which included 2'- and 5'-deoxyadenosine, inhibited unstimulated, 2-chloroadenosine and prostaglandin E1-stimulated homogenate cyclase activity to about the same degree. 3. Activation of NS20 homogenate adenylate cyclase by adenosine appears to be noncooperative. 4. The inhibitory action of putative "purinergic" neurotransmitters is postulated to be due to their effects on adenylate cyclase activity.  相似文献   

6.
The direct effects of chronic ethanol exposure on adenylate cyclase activity and cyclic AMP content were investigated in primary cerebellar cultures. By morphological criteria these cultures mainly contain granule cells with some astrocytes, and each cell type appears to contain both beta-adrenergic and adenosine-sensitive adenylate cyclase systems. Chronic treatment of the primary cerebellar cultures with 120 mM ethanol for 6 days caused a reduction in the stimulation of cyclic AMP content by isoproterenol and by the adenosine analogue 2-chloroadenosine. Kinetic analysis indicated that the chronic ethanol treatment decreased maximal activation of adenylate cyclase, as well as increased the EC50 values for norepinephrine and 2-chloroadenosine. Activation of norepinephrine-stimulated adenylate cyclase activity by in vitro ethanol was significantly enhanced after the chronic ethanol exposure. However, the chronic treatment did not alter activation of the 2-chloroadenosine-stimulated enzyme by in vitro ethanol. A similar difference in the response to in vitro ethanol after the chronic treatment was observed when cyclic AMP content of the intact cells was measured. The present data indicate that chronic ethanol exposure causes a selective increase in the sensitivity of adenylate cyclase to ethanol in some brain cells and a more generalized desensitization of receptor-stimulated cyclic AMP production.  相似文献   

7.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

8.
Published experiments both support and contradict the hypothesis that nerve growth factor (NGF) can regulate adenylate cyclase activity. Using a sensitive assay that measures the conversion of [2-3H]adenine to [3H]cyclic AMP, we have shown that NGF alone cannot measurably stimulate cyclic AMP production, whereas the adenosine analog phenylisopropyladenosine (PIA) stimulates adenylate cyclase 20-fold over basal activity. NGF potentiates the capacity of both PIA and cholera toxin to stimulate cyclic AMP accumulation at all concentrations tested. This potentiation occurs at the earliest measurable times and does not require RNA synthesis. Therefore, we conclude that cyclase activation alone does not account for the effect of NGF on cyclic AMP accumulation and we discuss possible mechanisms.  相似文献   

9.
To examine the role of cyclic AMP in the process of catecholamine release experiments have been performed with cultures of PC12 pheochromocytoma cells. Elevated potassium (56 mM) and carbamylcholine (carbachol, 10(-4) M) cause rapid increases in cyclic AMP levels in the cultures that show a time course similar to that of evoked dopamine release. These secretogogue-induced increases in cyclic AMP levels are well correlated with release in terms of relative magnitude and calcium dependence. Forskolin (a direct activator of adenylate cyclase) causes dose-related increases in cyclic AMP levels in PC12 cell cultures that are synergistic with those caused by either elevated potassium or carbachol. At low concentrations forskolin significantly increases evoked release, whereas at higher concentrations it increases both spontaneous and evoked release. These results suggest that cyclic AMP may be involved in the process of dopamine release from PC12 cells in culture.  相似文献   

10.
Adenosine-cyclic AMP relationships have been studied in pig mesenteric lymph node lymphocytes. The early 2--3-fold increase in cyclic AMP accumulation elicited by adenosine and 2-chloroadenosine, an adenosine deaminase-resistant analogue, could not be correlated to similar effects on the adenylate cyclase activity of disrupted cell preparations, but rather to the competitive inhibition of the low Km (0.17 muM) cyclic AMP phosphodiesterase. The existence of adenosine receptors coupled to lymphocyte adenylate cyclase, which had been proposed by several authors, could not be confirmed by this study Adenosine-cyclic AMP relationships do not appear to be involved in concanavalin A stimulation of pig lymphocytes.  相似文献   

11.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Adenosine-cyclic AMP relationships have been studied in pig mesenteric lymph node lymphocytes. The early 2–3-fold increase in cyclic AMP accumulation elicited by adenosine and 2-chloroadenosine, an adenosine deaminase-resistant analogue, could not be correlated to similar effects on the adenylate cyclase activity of disrupted cell preparations, but rather to the competitive inhibition of the low Km (0.17 μM) cyclic AMP phosphodiesterase. The existence of adenosine receptors coupled to lymphocyte adenylate cyclase, which had been proposed by several authors, could not be confirmed by this study. Adenosine-cyclic AMP relationships do not appear to be involved in concanavalin A stimulation of pig lymphocytes.  相似文献   

13.
The possible role of cyclic AMP in the presynaptic alpha-adrenoceptor-mediated modulation of [3H]noradrenaline (NA) release induced by 13 mM K+ from superfused rat cerebral cortex slices was investigated. Both dibutyryl-cyclic AMP (db-cAMP) and 8-bromo-cyclic AMP (8-Br-cAMP) dose-dependently (10(-4) - 10(-2) M) enhanced K+-induced (3H]NA release, maximally to about 160% of control. In contrast, db-cAMP had no effect on calcium-induced [3H]NA release in the presence of the calcium ionophore A 23187. Surprisingly, the phosphodiesterase (PDE) inhibitors 3-isobutyl-1-methylxanthine (IBMX). 7-benzyl-IBMX, 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771), and 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724) appeared to inhibit K+-induced [3H]NA release in a dose-dependent (10(-5) - 10(-3) M) manner. At a concentration of 10(-4) M, AK 62771 caused an inhibition of [3H]NA release by 30%, and this inhibitory effect was not affected by 10(-6) M phentolamine nor by 10(-3) M db-cAMP or 10(-4) M theophylline. Theophylline by itself enhanced [3H]NA release to about 135% of control. The inhibitor effect of the alpha-adrenoceptor agonist oxymetazoline (1 micro M) and the enhancing effect of the antagonist phentolamine (1 micro M) on [3H]NA release were significantly decreased in the presence of 10(-3) M db-cAMP or 8-Br-cAMP, whereas 10(-4) M ZK 62771 had no effect. In the presence of 10(-2) M NaF, a potent activator of adenylate cyclase, the inhibitory effect of oxymetazoline (1 micro M) on [3H]NA release was significantly decreased. The data obtained with the cyclic AMP analogues support the hypothesis that activation of presynaptic alpha-receptors modulating NA release results in an inhibition of a presynaptic adenylate cyclase. Possible causes for the anomalous effects of th PDE inhibitors are discussed.  相似文献   

14.
1. Forskolin, a naturally occurring diterpene that activates adenylate cyclase, HL706, a water-soluble derivative of forskolin (6 beta-[(piperidino)acetoxy]-7-desacetylforskolin) that is less potent than forskolin in activating adenylate cyclase, and 1,9-dideoxyforskolin, an analogue that does not activate adenylate cyclase, were examined for effects on the nicotinic receptor-mediated 22Na+ flux, a high potassium-induced 45Ca2+ flux through L-type calcium channels, and a high potassium-induced 86Rb+ efflux through a calcium-dependent potassium channels in PC12 cells. 2. Forskolin and analogues at 30 microM completely blocked carbamylcholine-elicited flux of 22Na+ through the nicotinic receptor-gated channel. 1,9-Dideoxyforskolin had an IC50 value of 1.6 microM with forskolin and HL706 being two- to three fold less potent. 3. Forskolin and its analogues appear to be noncompetitive blockers of the neuronal nicotinic receptor-channel complex in PC12 cells, but unlike many noncompetitive blockers, did not markedly enhance desensitization. Instead, forskolin, but not HL706 or 1,9-dideoxyforskolin, slightly antagonized the desensitization evoked by high concentrations of carbamylcholine. N-Ethylcarboxamidoadenosine, an adenosine analogue that elevates cyclic AMP and 8-bromo-cyclic AMP had no effect on desensitization. 4. Forskolin, HL706, and 1,9-dideoxyforskolin in the presence of carbamylcholine inhibited the binding of a noncompetitive blocker, [3H]perhydrohistrionicotoxin, to the muscle-type nicotinic receptor-channel complex in Torpedo electroplax membranes with IC50 values of 20 microM. Forskolin had no effect on [3H]perhydrohistrionicotoxin binding in the absence of carbamylcholine, while HL706 and 1,9-dideoxyforskolin still inhibited binding in the absence of carbamylcholine. 5. Forskolin, but not HL706 or 1,9-dideoxyforskolin had a slight inhibitory effect on the binding of [125I]alpha-bungarotoxin to acetylcholine recognition sites in Torpedo membranes. 1,9-Dideoxyforskolin at 30 microM, but not forskolin or HL706, markedly inhibited depolarization-evoked 45Ca+ flux and 86Rb+ efflux in PC12 cells, suggesting that 1,9-dideoxyforskolin has nonspecific inhibitory effects on a variety of ion channels.  相似文献   

15.
1. [3H]-2-chloroadenosine has been found to be a suitable ligand for the study of adenosine receptors in rat brain synaptic membranes. 2. Binding sites labelled by [3H]-2-chloroadenosine had a high affinity with a KD value of 23.5 nM. 3. Binding is heat sensitive, pH dependent and probably involves protein molecules. 4. The IC50 values for 2-chloroadenosine, adenosine, L-N6-phenylisopropyladenosine and D-N6-phenylisopropyladenosine, N6-cyclohexyladenosine and adenosine-5'-N-ethyl-carboxamide inhibition of [3H]2-chloroadenosine binding are in good agreement with the values obtained in studies of the ability of these compounds to inhibit adenylate cyclase, suggesting that [3H]-2-chloroadenosine binding sites reported here are comparable to the adenosine A1 receptor site. 5. There are regional differences in [3H]-2-chloroadenosine binding to brain membranes. 6. This difference is probably due to the discrepancies in the number of binding sites, and is probably not caused by changing affinities of receptors to the ligand.  相似文献   

16.
Noradrenaline (NA) and the alpha 2-adrenergic agonists clonidine, BHT-920, and UK 14304-18 inhibit potassium-evoked release of [3H]NA from rat occipital cortex tissue chops with similar potencies. NA (10(-5) M) was most effective as up to 85% inhibition could be observed compared with 75%, 55%, and 35% for UK 14304-18, clonidine, and BHT-920, respectively, all at 10(-5) M. Potassium-evoked release was enhanced by both forskolin (10(-5) M) and 1 mM dibutyryl cyclic AMP. Pretreatment of tissue chops with 1 mM dibutyryl cyclic AMP in the presence of 3-isobutyl-1-methylxanthine partially reversed the alpha 2-adrenergic agonist inhibition of NA release. No reversal of inhibition was observed following pretreatment with 10(-5) M forskolin. The effects of clonidine, BHT-920, UK-14308-18, and NA on cyclic AMP formation stimulated by (a) forskolin, (b) isoprenaline, (c) adenosine, (d) potassium, and (e) NA were examined. Only cAMP formation stimulated by NA was inhibited by these alpha 2-adrenergic agonists. These results suggest that only a small fraction of adenylate cyclase in rat occipital cortex is coupled to alpha 2-adrenergic receptors. These results are discussed in relation to recent findings that several alpha 2-adrenergic receptor subtypes occur, not all of which are coupled to the inhibition of adenylate cyclase, and that alpha 2-adrenergic receptors inhibit NA release in rat occipital cortex by a mechanism that does not involve decreasing cyclic AMP levels.  相似文献   

17.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3':5'-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly within 1 min and was maximal by 10 to 20 min with approx. 2 and 10 muM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C]adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

18.
The involvement of Ca2+/phospholipid-dependent protein kinase (protein kinase C, PKC) and cyclic AMP-dependent protein kinase in the K+-evoked release of norepinephrine (NE) was studied using guinea pig brain cortical synaptosomes preloaded with [3H]NE. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a potent activator of PKC, enhanced the K+-evoked release of [3H]NE, in a concentration-dependent manner, but with no effect on the spontaneous outflow and uptake of [3H]NE in the synaptosomes. The apparent affinity of the evoked release for added calcium but not the maximally evoked release was increased by TPA (10(-7) M). Inhibitors of PKC, polymyxin B, and a more potent inhibitor, staurosporine, counteracted the TPA-induced potentiation of the evoked release. Both forskolin and dibutyryl cyclic AMP (DBcAMP) enhanced the evoked release, but reduced the TPA-potentiated NE release. A novel inhibitor of cyclic AMP-dependent protein kinase, KT5720, blocked both the forskolin-induced increase in the evoked release and its inhibition of TPA-induced potentiation in the evoked release, thereby suggesting that forskolin or DBcAMP counteracts the Ca2+-dependent release of NE by activating cyclic AMP-dependent protein kinase. These results suggest that the activation of PKC potentiates the evoked release of NE and that the activation of cyclic AMP-dependent protein kinase acts negatively on the PKC-activated exocytotic neurotransmitter release process in brain synaptosomes of the guinea pig.  相似文献   

19.
Whereas adenosine itself exerted independent stimulatory and inhibitory effects on the adenylate cyclase activity of a platelet particulate fraction at low and high concentrations respectively, 2-substituted and N6-monosubstituted adenosines had stimulatory but greatly decreased inhibitory effects. Deoxyadenosines, on the other hand, had enhanced inhibitory but no stimulatory effects. The most potent inhibitors found were, in order of increasing activity, 9-(tetrahydro-2-furyl)adenine (SQ 22536), 2',5'-dideoxyadenosine and 2'-deoxyadenosine 3'-monophosphate. Kinetic studies on prostaglandin E1-activated adenylate cyclase showed that the inhibition caused by either 2',5'-dideoxyadenosine or compound SQ 22536 was non-competitive with MgATP and that the former compound, at least, showed negative co-operativity; 50% inhibition was observed with 4 micron-2',5'-dideoxyadenosine or 13 micron-SQ 22536. These two compounds also inhibited both the basal and prostaglandin E1-activated adenylate cyclase activities of intact platelets, when these were measured as the increases in cyclic [3H]AMP in platelets that had been labelled with [3H]adenine and were then incubated briefly with papaverine or papaverine and prostaglandin E1. Both compounds, but particularly 2',5'-dideoxyadenosine, markedly decreased the inhibition by prostaglandin E1 of platelet aggregation induced by ADP or [arginine]vasopressin as well as the associated increases in platelet cyclic AMP, so providing further evidence that the effects of prostaglandin E1 on platelet aggregation are mediated by cyclic AMP. 2'-Deoxyadenosine 3'-monophosphate did not affect the inhibition of aggregation by prostaglandin E1, suggesting that the site of action of deoxyadenosine derivatives on adenylate cyclase is intracellular. Neither 2',5'-dideoxyadenosine nor compound SQ 22536 alone induced platelet aggregation. Moreover, neither compound potentiated platelet aggregation or the platelet release reaction when suboptimal concentrations of ADP, [arginine]vasopressin, collagen or arachidonate were added to heparinized or citrated platelet-rich plasma in the absence of prostaglandin E1. These results show that cyclic AMP plays no significant role in the responses of platelets to aggregating agents in the absence of compounds that increase the platelet cyclic AMP concentration above the resting value.  相似文献   

20.
Rat brain cortex slices, prelabelled with [3H]noradrenaline, were superfused and exposed to electrical biphasic block pulses (1 Hz; 12 mA, 4 ms) or to the Ca2+ ionophore A 23187 (10 microM) in the presence of 1.2 mM Ca2+. Forskolin (10 microM), 8-bromo-cyclic AMP (300 microM), and dibutyryl-cyclic AMP (300 microM) facilitated both the electrically evoked and A 23187-induced [3H]noradrenaline release, whereas the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX, 300 microM) and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771, 30 microM) enhanced the electrically evoked release only. The inhibitory effects of clonidine (1 nM-1 microM) and the facilitatory effect of phentolamine (0.01-10 microM) on the electrically evoked [3H]noradrenaline release were strongly reduced in the presence of 8-bromo-cyclic AMP. Clonidine (1 microM) reduced and phentolamine (3 microM) enhanced A 23187-induced [3H]noradrenaline release, provided that the slices were simultaneously exposed to forskolin. The inhibitory effects of morphine (1 microM) and [D-Ala2-D-Leu5]enkephalin (DADLE, 0.3 microM), like that of the Ca2+ antagonist Cd2+ (15 microM), on the electrically evoked release of [3H]noradrenaline were not affected by 8-bromo-cyclic AMP. Moreover, morphine and DADLE did not inhibit A 23187-induced release in the absence or presence of forskolin. These data strongly suggest that in contrast to presynaptic mu-opioid receptors, alpha 2-adrenoceptors on noradrenergic nerve terminals are negatively coupled to adenylate cyclase and may thus reduce neurotransmitter release by inhibiting the feed-forward action of cyclic AMP on the secretion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号