首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taste receptor organ activity and preference of sodium chloride solution in rats with deficit of substance P (SP) were studied. Total impulse activity of chorda tympani nerve of 7-8 week old rats was recorded under nembutal anesthesia. The taste responses to four solutions (sucrose, quinine sulfate, sodium chloride and citric acid) were decreased in rats injected with capsaicin in comparison with rats injected with vehicle. The rats injected with capsaicin preferred water to sodium chloride (two-bottle technique). On the contrary the rats injected with capsaicin preferred the salt solution. These data together with previous studies show the important role of peptide SP in taste receptor activity and "salt appetite".  相似文献   

2.
Stimulation of a Primary Taste Receptor by Salts   总被引:7,自引:4,他引:3       下载免费PDF全文
A quantitative study was made of the repetitive response of the salt receptor cell of the blowfly taste receptor. The response begins at a high frequency and declines to a steady frequency during brief stimuli. The initial response was found to be a sigmoid function of the log of stimulus intensity over a short range of intensities. It was shown that a theory (Beidler, 1954; for mammalian salt receptors) that relates the magnitude of the steady response to stimulus intensity applies to this receptor. From the theory, it was calculated that the relative free energy change of the reaction between salt and receptor site was in the range 0 to -1 kcal/mole; and, therefore, the reaction probably involves weak physical forces. Evidence is given that the salt-combining sites of the receptor are anionic and strongly acidic and that consequently the cation of a salt largely dominates stimulation. Preliminary evidence suggests that the receptor has a high degree of specificity toward salts, being stimulated primarily by monovalent inorganic cations.  相似文献   

3.
In order to study the role of peripheral taste sensitivity inmediating increases in salt intake of the rat, the effects ofsodium deprivation and adrenalectomy on chorda tympani nerveresponses to taste stimulation were determined. Sodium deprivationresulted in a reduction in whole nerve responsivity to suprathresholdNaCl concentrations requiring a 10-fold increase in concentrationto elicit the same neural signal of control preparations. Saltintake of sodium deprived rats was predicted by adjusting datain a 10-min intake test from control rats for the reduced neuralsignal and lower salivary sodium levels of sodium deprived rats.The whole nerve responses to LiCl and KCl, as well as to NaCl,were reduced after sodium deprivation and adrenalectomy. Themultifiber response of the chorda tympani is comprised of theindividual responses of NaCl sensitive N-best fibers and HCl/NaClsensitive H-best fibers. After sodium deprivation N-best fibers'responses to suprathreshold concentrations of NaCl were reduced;H-best fibers' responses were not affected by sodium deprivation.Future studies will determine the effect of KCl and other saltson responses of N-best and H-best fibers. Applying Beidler'sbiophysical model to the single fiber data suggests that sodiumdeprivation influences receptor mechanisms for NaCl of N-bestfibers and not H-best fibers. Because repeated NaCl stimulationresulted in increased chorda tympani responsivity to NaCl, wesuggest that sodium deprivation may alter the salt receptorsimply by disuse. Altered receptor sensitivity may be an adaptivemechanism to influence salt consumption by a shift in suprathresholdNaCl intensity.  相似文献   

4.
Taste plays an essential role in food selection and consequently overall nutrition. Because salt taste is appetitive, humans ingest more salt than they need. Acids are the source of intrinsically aversive sour taste, but in mixtures with sweeteners they are consumed in large quantities. Recent results have provided fresh insights into transduction and sensory adaptation for the salty and sour taste modalities. The sodium-specific salt taste receptor is the epithelial sodium channel whereas a nonspecific salt taste receptor is a taste variant of the vanilloid receptor-1 nonselective cation channel, TRPV1. The proximate stimulus for sour taste is a decrease in the intracellular pH of a subset of acid-sensing taste cells, which serves as the input to separate transduction pathways for the phasic and tonic parts of the sour neural response. Adaptation to sour arises from the activation of the basolateral sodium-hydrogen exchanger isoform-1 by an increase in intracellular calcium that sustains the tonic phase of the sour taste response.  相似文献   

5.
Generalization of a conditioned taste aversion (CTA) is based on similarities in taste qualities shared by the aversive substance and another taste substance. CTA experiments with rats have found that an aversion to a variety of sweet stimuli will cross-generalize with monosodium glutamate (MSG) when amiloride, a sodium channel blocker, is added to all solutions to reduce the taste of sodium. These findings suggest that the glutamate anion elicits a sweet taste sensation in rats. CTA experiments, however, generally do not indicate whether two substances have different taste qualities. In this study, discrimination methods in which rats focused on perceptual differences were used to determine if they could distinguish between the tastes of MSG and four sweet substances. As expected, rats readily discriminated between two natural sugars (sucrose, glucose) and two artificial sweeteners (saccharin, SC45647). Rats also easily discriminated between MSG and glucose, saccharin and, to a lesser extent, SC45647 when the taste of the sodium ion of MSG was reduced by the addition of amiloride to all solutions, or the addition of amiloride to all solutions and NaCl to each sweet stimulus to match the concentration of Na+ in the MSG solutions. In contrast, reducing the cue function of the Na+ ion significantly decreased their ability to discriminate between sucrose and MSG. These results suggest that the sweet qualities of glutamate taste is not as dominate a component of glutamate taste as CTA experiments suggest and these qualities are most closely related to the taste qualities of sucrose. The findings of this study, in conjunction with other research, suggest that sweet and umami afferent signaling may converge through a taste receptor with a high affinity for glutamate and sucrose or a downstream transduction mechanism. These data also suggest that rats do not necessarily perceive the tastes of these sweet stimuli as similar and that these sweet stimuli are detected by multiple sweet receptors.  相似文献   

6.
Endoxin is an endogenous substance known to participate in the regulation of the sodium balance and hypertension. Its chemical nature remains elusive. Based on its capacity to specifically bind to Na-K ATPase receptors we describe a receptor assay for its measurement in human urine. The endoxin was extracted by methanol and desalted on a silicagel column with a mixture of chloroform-ethanol. Calibration curves have been established by the transformation of the weight of crude extract in actual content of active material expressed in nmol/l as calculated from Scatchard plots analysis. Normal values are given for subjects on regular salt diet. Changes in endoxin urinary elimination after an oral salt load are outlined.  相似文献   

7.
Amiloride is known to inhibit the taste response of vertebrates to salt by blocking the amiloride-sensitive sodium channel. In this study, we investigated electrophysiologically the effect of amiloride on the taste response of the fleshfly Boettcherisca peregrina. When 0.5 mM amiloride was included in taste solutions, the response of the salt receptor cell (salt response) to sodium chloride (NaCl) was not depressed but those of the sugar receptor cell (sugar responses) to sucrose, glucose, fructose, l-valine (l-Val) and l-phenylalanine (l-Phe) were strongly depressed. An inhibitory effect of amiloride on the concentration-response relationship for both sucrose and l-Phe was clearly revealed, but not at high concentrations of sucrose. After pretreatment of a chemosensory seta with 0.15 mM amiloride for 10 min, the salt response to NaCl was not affected. On the other hand, the sugar responses to sucrose, fructose, l-Val and l-Phe were depressed just after amiloride pretreatment. The sugar response to adenosine 5’-diphosphate (ADP) mixed with 0.5 mM amiloride was not depressed, but the response to ADP alone was depressed after amiloride pretreatment. It was therefore observed that amiloride depressed the responses to all stimulants that react with each of the receptor sites of the sugar receptor cell.  相似文献   

8.
Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.  相似文献   

9.
We studied the anatomical properties of parasympathetic postganglionic neurons in the frog tongue and their modulatory effects on taste cell responses. Most of the parasympathetic ganglion cell bodies in the tongue were found in extremely small nerve bundles running near the fungiform papillae, which originate from the lingual branches of the glossopharyngeal (GP) nerve. The density of parasympathetic postganglionic neurons in the tongue was 8000-11,000/mm(3) of the extremely small nerve bundle. The mean major axis of parasympathetic ganglion cell bodies was 21 microm, and the mean length of parasympathetic postganglionic neurons was 1.45 mm. Electrical stimulation at 30 Hz of either the GP nerve or the papillary nerve produced slow hyperpolarizing potentials (HPs) in taste cells. After nicotinic acetyl choline receptors on the parasympathetic ganglion cells in the tongue had been blocked by intravenous (i.v.) injection of D-tubocurarine (1 mg/kg), stimulation of the GP nerve did not induce any slow HPs in taste cells but that of the papillary nerve did. A further i.v. injection of a substance P NK-1 antagonist, L-703,606, blocked the slow HPs induced by the papillary nerve stimulation. This suggests that the parasympathetic postganglionic efferent fibers innervate taste cells and are related to a generation of the slow HPs and that substance P is released from the parasympathetic postganglionic axon terminals. When the resting membrane potential of a taste cell was hyperpolarized by a prolonged slow HP, the gustatory receptor potentials for NaCl and sugar stimuli were enhanced in amplitude, but those for quinine-HCl and acetic acid stimuli remained unchanged. It is concluded that frog taste cell responses are modulated by activities of parasympathetic postganglionic efferent fibers innervating these cells.  相似文献   

10.
Recently we reported that rat taste receptor cells respond to the neurotransmitter serotonin with an inhibition of a calcium-activated potassium current [17]. In the present study, this observation is confirmed and extended by studying the effects of an array of serotonergic agonists on membrane properties, calcium-activated potassium current, and voltage-dependent sodium current in taste receptor cells using the patch-clamp recording technique in the whole-cell configuration. Serotonergic inhibition of calcium-activated potassium current was mimicked by the agonists N-(3-trifluoromethylphenyl)piperazine and by (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene. Both produced reversible inhibition of K Ca as well as significantly increasing the input resistance of the cell. The agonists 1-(1-naphthyl)piperazine and buspirone (both serotonin receptor 1A agonists) were similarly effective in reducing K Ca . Outward current was unaffected by application of phenylbiguanide, a serotonin receptor 3 agonist, though current was affected by subsequent application of (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene. Two agonists—N-(3-trifluoromethylphenyl)piperazine and (±)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthalene—were also tested on voltage-dependent sodium currents; both were effective and reversible in reducing its magnitude at a variety of applied potentials. These data are consistent with the notion that serotonin effects in rat taste receptor cells are mediated by serotonin 1A receptors, though other receptor subtypes may be additionally expressed. Serotonin may affect the taste cell electrical properties during active stimulation in a paracrine fashion. Received: 10 May 1999/Revised: 27 September 1999  相似文献   

11.
Stably transfected Chinese hamster ovary cells expressing either the substance P receptor or neurokinin A receptor were constructed, isolated, and characterized. Equilibrium ligand binding studies performed on whole cells demonstrated that cell lines expressing either of these receptors contained a single class of high-affinity binding sites with an apparent KD of 0.16 nM for the substance P receptor and an apparent KD of 2.1 nM for the neurokinin A receptor. The higher affinity of substance P for its receptor was accounted for by both a greater association rate constant and a lesser dissociation rate constant. The time course and extent of ligand-stimulated inositol 1,4,5-trisphosphate mass increases in both cell lines were similar and displayed rapid and transient kinetics. Ligand-stimulated cyclic AMP accumulation was also apparent in the cell lines, although the time course and magnitude of the responses were substantially different, with the neurokinin A receptor mediating a greater and more prolonged response. These studies establish the presence of functional substance P receptors and neurokinin A receptors in the stably transfected cell lines and provide evidence for agonist-dependent differential stimulation of second messenger responses.  相似文献   

12.
The phenomenon of electric taste was investigated by recording from the chorda tympani nerve of the rat in response to both electrical and chemical stimulations of the tongue with electrolytes in order to gain some insight into its mechanism on both a neurophysiological and biophysical basis. The maximum neural response levels were identical for an individual salt (LiCl, NaCl, KCl, or CaCl2), whether it was presented as a chemical solution or as an anodal stimulus through a subthreshold solution. These observations support the idea that stimulation occurs by iontophoresis of ions to the receptors at these current densities (less than 100 microA/cm2). Electric responses through dilute HCl were smaller than the chemically applied stimulations, but the integrated anodal responses appeared similar to chemical acid responses, as evidenced by an OFF response to both forms of stimuli. Hydrogen may be more permeant to the lingual epithelium and would thus be shunted away from the taste receptors during anodal stimulation. When the anion of electric taste was varied via subthreshold salt solutions, the response magnitude increased as the mobility of the anion decreased. The transport numbers of the salts involved adequately explains these differences. The physical aspects of ion migration occurring within the adapting fluid on the tongue are also discussed. Direct neural stimulation by the current appears to occur only at higher current densities (greater than 300 microA/cm2). If the taste cells of the tongue were inactivated with either iodoacetic acid (IAA) or N-ethyl maleimide (NEM), or removed with collagenase, then responses from the chorda tympani could be obtained only at these higher current densities. Latency measurements before and after IAA or NEM treatment corroborated these findings. The results are discussed in terms of several proposed mechanisms of electric taste and it is concluded that an ion accumulation mechanism can adequately explain the data.  相似文献   

13.
Sato T  Okada Y  Toda K 《Chemical senses》2004,29(8):651-657
Electrical stimulation of the frog glossopharyngeal (GP) nerve evoked slow hyperpolarizing potentials (HPs) in taste cells. This study aimed to clarify whether slow HPs were postsynaptically induced in taste cells. The slow HPs were recorded intracellularly with a microelectrode. When Ca2+ concentration in the blood plasma was decreased to approximately 0.5 mM, the amplitude of slow HPs reduced and their latency lengthened. When the Ca2+ concentration was increased to approximately 20 mM, the amplitude of slow HPs increased and their latency shortened. Addition of Cd2+ to the plasma greatly reduced the amplitude of slow HPs and lengthened their latency. These data suggest that the slow HPs are dependent on presynaptic activities in the GP nerve terminals in the taste disk. Of various antagonists injected intravenously for blocking receptors of neurotransmitter biogenic amines and peptides, only antagonists for substance P blocked the slow HPs at 2-4 mg/kg body wt. Application of substance P of 2 mg/kg to the plasma induced hyperpolarizing responses in taste cells, whose amplitude was the same as that of the slow HPs induced by GP nerve stimulation. Application of a nonselective cation channel antagonist, flufenamic acid, to the plasma blocked the slow HPs. These results suggest that the slow HPs are generated by closing the nonselective cation channels in the postsynaptic membrane of taste cells following possible release of substance P from the GP nerve terminals in the taste disk.  相似文献   

14.
Nagai T  Nii D  Takeuchi H 《Chemical senses》2001,26(8):965-969
Studies in the last two decades have shown that amiloride-sensitive Na(+) channels play a role in NaCl transduction in rat taste receptors. However, this role is not readily generalized for salt taste transduction in vertebrates, because functional expression of these channels varies across species and also in development in a species. Glossopharyngeal nerve responses to sodium and potassium salts were recorded in larval and metamorphosed salamanders and compared before and after the oral floor was exposed to amiloride, a blocker of Na(+) channels known to be responsible for epithelial ion transport. Pre-exposure to amiloride (100 microM) did not affect salt taste responses in both axolotls (Ambystoma mexicanum) and larval Ezo salamanders (Hynobius retardatus). In contrast, in metamorphosed Ezo salamanders the nerve responses to NaCl were significantly reduced by amiloride. In amphibians amiloride-sensitive components in salt taste transduction seem to develop during metamorphosis.  相似文献   

15.
Taste receptors, or basiconic sensilla, are distributed over the legs of the locust and respond to direct contact with chemical stimulants. The same chemosensory neurones that responded to contact with salt solutions also responded to particular acidic odours. Odours of food and other chemicals had no effect on the chemosensory neurones. In locusts free to move, an acid odour presented to the tarsus of a hind leg evoked a rapid avoidance movement in which the tarsus was levated, the tibia flexed and the femur levated. Intracellular recordings from motor neurones that innervate muscles of the hind leg showed that when an acid odour was directed towards basiconic sensilla on the leg there was a reciprocal activation of antagonistic motor pools that move the leg segments about each joint. Thus an extensor tibiae motor neurone was inhibited while a flexor tibiae motor neurone was excited, and the tarsal depressor and retractor unguis motor neurones were inhibited while the tarsal levator motor neurone was excited. This method of odour stimulation of taste receptors generates less adaptation than direct contact with chemicals, and therefore represents an ideal method for stimulating taste receptors for further studies on the central pathways processing taste signals. Accepted: 2 June 1998  相似文献   

16.
Conditioned taste aversion studies have demonstrated that rats conditioned to avoid monosodium glutamate (MSG) with amiloride added to reduce the intensity of the sodium component of MSG taste, will generalize an aversion for MSG to sucrose and vice versa. This suggests that taste transduction for sodium, sucrose and MSG may intersect at some point. Generalization of conditioned taste aversion indicates that two substances share similar taste features, but it does not reveal the extent of their differences. In this study, we tested how well rats can discriminate sucrose and MSG under a variety of conditions. Water-deprived rats were trained on a combination of water reinforcement and shock avoidance to discriminate between MSG and sucrose, both with and without amiloride, and with and without equimolar NaCl in all solutions. In the absence of amiloride, rats reliably distinguished between MSG and sucrose down to 10 mM solutions. However, they could correctly identify solutions only above 50 mM in the presence of amiloride, equimolar sodium chloride, or both. These results suggest that gustatory stimulation by MSG and sucrose interact somewhere in taste transduction, perhaps within taste receptor cells or gustatory afferent pathways.  相似文献   

17.
Abstract Taste perception plays a key role in determining individual food preferences and dietary habits. Individual differences in bitter, sweet, umami, sour, or salty taste perception may influence dietary habits, affecting nutritional status and nutrition-related chronic disease risk. In addition to these traditional taste modalities there is growing evidence that "fat taste" may represent a sixth modality. Several taste receptors have been identified within taste cell membranes on the surface of the tongue, and they include the T2R family of bitter taste receptors, the T1R receptors associated with sweet and umami taste perception, the ion channels PKD1L3 and PKD2L1 linked to sour taste, and the integral membrane protein CD36, which is a putative "fat taste" receptor. Additionally, epithelial sodium channels and a vanilloid receptor, TRPV1, may account for salty taste perception. Common polymorphisms in genes involved in taste perception may account for some of the interindividual differences in food preferences and dietary habits within and between populations. This variability could affect food choices and dietary habits, which may influence nutritional and health status and the risk of chronic disease. This review will summarize the present state of knowledge of the genetic variation in taste, and how such variation might influence food intake behaviors.  相似文献   

18.
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.  相似文献   

19.
When recording from the tip of insect taste hairs, responses to chemical stimulation may be influenced by electrical currents, such as the preamplifier's input bias current. The effect of electrical currents on firing frequency of the salt receptor cell to KCl and NaCl stimulation was determined in labellar ‘aboral’ and ‘adoral’ taste hairs of the blowfly Calliphora vicina. Negative currents always decreased spike frequency, whereas positive currents either increased it, or did not change it significantly. Spike frequency changed less than 1% per 5 × 10?11 A.A consistent picture of the electrophysiology of blowfly taste hairs is given. It includes a distal pore, present in the dendrite-free lumen of the hair. It abandons the concept of a generator current that transmits excitation from the distal, chemoreceptive part of the taste cell dendrite to the action potential generator in or near the taste cell body. The experimental results are interpreted on the basis of this picture. It is concluded that the ‘electrophoretic effect’ of the electrical current is very small. Thus, the measured effect should mainly be due to a ‘direct effect’ of electrical current on electrically excitable structures in the salt receptor cell, particularly in its dendrite.  相似文献   

20.
We investigated the relationship between the membrane potential of frog taste cells in the fungiform papillae and the tonic discharge of parasympathetic efferent fibers in the glossopharyngeal (GP) nerve. When the parasympathetic preganglionic fibers in the GP nerve were kept intact, the mean membrane potential of Ringer-adapted taste cells was -40 mV but decreased to -31 mV after transecting the preganglionic fibers in the GP nerve and crushing the postganglionic fibers in the papillary nerve. The same result occurred after blocking the nicotinic acetylcholine receptors on parasympathetic ganglion cells in the tongue and blocking the substance P neurokinin-1 (NK-1) receptors in the gustatory efferent synapses. This indicates that the parasympathetic nerve (PSN) hyperpolarizes the membrane potential of frog taste cells by -9 mV. Repetitive stimulation of a transected GP nerve revealed that a -9-mV hyperpolarization of taste cells maintained under the intact GP nerve derives from an approximately 10-Hz discharge of the PSN efferent fibers. The mean frequency of tonic discharges extracellularly recorded from PSN efferent fibers of the taste disks was 9.1 impulses/s. We conclude that the resting membrane potential of frog taste cells is continuously hyperpolarized by on average -9 mV by an approximately 10-Hz tonic discharge from the parasympathetic preganglionic neurons in the medulla oblongata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号