首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
High-resolution fluorescence in situ hybridization (FISH) on interphase and pachytene nuclei, and extended DNA fibers enabled microscopic distinction of DNA sequences less than a few thousands of base pairs apart. We applied this technique to reveal the molecular organization of telomere ends in japonica rice (Oryza sativa ssp. japonica), which consist of the Arabidopsis type TTTAGGG heptameric repeats and the rice specific subtelomeric tandem repeat sequence A (TrsA). Southern hybridizations of DNA digested with Bal31 and EcoRI, and FISH on chromosomes and extended DNA fibers demonstrated that (1) all chromosome ends possess the telomere tandem repeat measuring 3–4 kb; (2) the subtelomeric TrsA occurs only at the ends of the long arms of chromosomes 6 and 12, and measure 6 and 10 kb, which corresponds to 231 and 682 copies for these sites, respectively; (3) the telomere and TrsA repeats are separated by at most a few thousands of intervening nucleotide sequences. The molecular organization for a general telomere organization in plant chromosomes is discussed.  相似文献   

2.
Yan J  Chen BZ  Bouchard EF  Drouin R 《Chromosoma》2004,113(4):204-209
Telomeres are composed of tandem repeated sequences, TTAGGG, that can be detected either by fluorescence in situ hybridization (FISH), more efficiently by using a peptide nucleic acid (PNA) probe, or by the primed in situ (PRINS) technique. However, the efficiency of human telomere labeling using PRINS is somewhat lower than the efficiency using PNA-FISH. To solve this problem, we developed a double-strand PRINS technique, which uses two primers, (TTAGGG)7 and (CCCTAA)7, to label both forward and reverse telomeric DNA strands. A total of 120 lymphocyte metaphases obtained from three normal adults were scored to evaluate the labeling efficiency based upon the telomere signal frequency present in chromatid ends and chromosome arms. As a comparison, 30 metaphases from the same three individuals were evaluated using PNA-FISH. The average labeling efficiency of PRINS was increased to a level very close to that obtained with PNA-FISH. Therefore, we demonstrated that the low labeling efficiency of human telomeres with regular PRINS was likely caused by uneven annealing of primers at the relatively short human telomere sequences, resulting in some telomere sites with very weak or absent labeling. We suggest that the present double-strand labeling protocol is critical to maximize the labeling efficiency of the human telomere sequence when using the PRINS technique.  相似文献   

3.
A mouse subtelomeric sequence, ST1, was generated from genomic DNA of the mouse HR9 (129/Sv origin) cell line by the polymerase chain reaction (PCR) using a single telomeric primer. ST1 was cloned and characterized: it is composed of 670 bp of novel DNA sequence flanked on each end by inverted telomeric hexanucleotide repeats (TTAGGG)n. PCR amplification from BALB/c mouse DNA using this single primer gave the same major product. Southern analysis and PCR using internal ST1 primers confirmed that the ST1 sequence is present in mouse genomic DNA. In situ hybridization to metaphase chromosomes of SJL origin mapped ST1 to many, if not every, mouse telomere. PCR experiments using different combinations of the telomeric, minor satellite, and ST1 primers indicated that some ST1 copies are adjacent to minor satellite sequences, that telomeric and ST1 sequences are not generally interspersed with minor satellite sequences,and that ST1 and the minor satellite have a consistent and specific orientation relative to each other and to the telomere.by H.F. Willard  相似文献   

4.
We describe a method to identify and characterize DNA fragments containing the junction of AA genome-specific tandem repeat sequences (here called TrsA) with adjacent chromosomal sequences of rice by the polymerase chain reaction (PCR) using a pair of primers that hybridize with TrsAs and a flanking non-TrsA sequence. With this method, we obtained results suggesting that TrsA sequences present at two loci (here called trsA1 and trsA2) are flanked by direct repeats of chromosomal sequences of 172 by and about 440 by in length, respectively. These results support the idea that the TrsA sequences have been inserted into each locus by transposition, resulting in duplication of the chromosomal sequence used as target. We also describe a method to identify and characterize TrsA sequences repeated in only a few copies in the rice genome by PCR, using a pair of primers that hybridize with two different portions in the TrsA sequence, and demonstrate that TrsA sequences are present not only in rice strains with the AA genome, but also in those with non-AA genomes. The TrsA sequences were present at the trsA1 locus in all the rice strains examined, indicating that TrsA was inserted and amplified at the locus before the divergence of the various species of rice in the Oryza genus. TrsA sequences were present at the trsA2 locus, however, only in an O. sativa IR36 strain, indicating that TrsA was inserted and amplified at this locus during divergence of rice strains with the AA genome.  相似文献   

5.
This paper describes a fluorescence in situ hybridization (FISH) analysis of three different repetitive sequence families, which were mapped to mitotic metaphase chromosomes and extended DNA fibers (EDFs) of the two subspecies of rice (Oryza sativa), indica and japonica (2n=2x=24). The repeat families studied were (1) the tandem repeat sequence A (TrsA), a functionally non-significant repeat; (2) the [TTTAGGG]n telomere sequence, a non-transcribed, tandemly repeated but functionally significant repeat; and (3) the 5S ribosomal RNA (5S rDNA). FISH of the TrsA repeat to metaphase chromosomes of indica and japonica cultivars revealed clear signals at the distal ends of twelve and four chromosomes, respectively. As shown in a previous report, the 17S ribosomal RNA genes (17S rDNA) are located at the nucleolus organizers (NORs) on chromosomes 9 and 10 of the indica cultivar. However, the japonica rice lacked the rDNA signals on chromosome 10. The size of the 5S rDNA repeat block, which was mapped on the chromosome 11 of both cultivars, was 1.22 times larger in the indica than in the japonica genome. The telomeric repeat arrays at the distal ends of all chromosome arms were on average three times longer in the indica genome than in the japonica genome. Flow cytometric measurements revealed that the nuclear DNA content of indica rice is 9.7% higher than that of japonica rice. Our data suggest that different repetitive sequence families contribute significantly to the variation in genome size between indica and japonica rice, though to different extents. The increase or decrease in the copy number of several repetitive sequences examined here may indicate the existence of a directed change in genome size in rice. Possible reasons for this phenomenon of concurrent evolution of various repeat families are discussed. Received: 9 August 1999 / Accepted: 29 December 1999  相似文献   

6.
Epirubicin exerts its anti cancer action by blocking DNA/RNA synthesis and inhibition of topoisomerase-II enzyme. Recent reports on its influence on telomere maintenance, suggest interaction with G-quadruplex DNA leading to multiple strategies of action. The binding of epirubicin with parallel stranded inter molecular G-quadruplex DNA [d-(TTAGGGT)]4 comprising human telomeric DNA sequence TTAGGG was investigated by absorption, fluorescence, circular dichroism and nuclear magnetic resonance spectroscopy. The epirubicin binds as monomer to G-quadruplex DNA with affinity, Kb1 = 3.8 × 106 M−1 and Kb2 = 2.7 × 106 M−1, at two independent sites externally. The specific interactions induce thermal stabilization of DNA by 13.2–26.3 °C, which is likely to come in the way of telomere association with telomerase enzyme and contribute to epirubicin-induced apoptosis in cancer cell lines. The findings pave the way for drug designing in view of the possibility of altering substituent groups on anthracyclines to enhance efficacy using alternate mechanism of its interaction with G4 DNA, causing interference in telomere maintenance pathway by inducing telomere dysfunction.  相似文献   

7.
In association with a phylogenetic tree of Asparagales, our previous results showed that a distinct clade included plant species where the ancestral, Arabidopsis-type of telomeric repeats (TTTAGGG)n had been partially, or fully, replaced by the human-type telomeric sequence (TTAGGG)n. Telomerases of these species synthesize human repeats with a high error rate in vitro. Here we further characterize the structure of telomeres in these plants by analyzing the overall arrangement of major and minor variants of telomeric repeats using fluorescence in situ hybridization on extended DNA strand(s). Whilst the telomeric array is predominantly composed of the human variant of the repeat, the ancestral, Arabidopsis-type of telomeric repeats was ubiquitously observed at one of the ends and/or at intercalary positions of extended telomeric DNAs. Another variant of the repeat typical of Tetrahymena was observed interspersed in about 20% of telomerics. Micrococcal nuclease digestions indicated that Asparagales plants with a human-type of telomere have telomeric DNA organised into nucleosomes. However, unexpectedly, the periodicity of the nucleosomes is not significantly shorter than bulk chromatin as is typical of telomeric chromatin. Using electrophoretic mobility shift assays we detected in Asparagales plants with a human type of telomere a 40-kDa protein that forms complexes with both Arabidopsis- and human-type G-rich telomeric strands. However, the protein shows a higher affinity to the ancestral Arabidopsis-type sequence. Two further proteins were found, a 25-kDa protein that binds specifically to the ancestral sequence and a 15-kDa protein that binds to the human-type telomeric repeat. We discuss how the organisation of the telomere repeats in Asparagales may have arisen and stabilised the new telomere at the point of mutation.  相似文献   

8.
Telomereistheessentialgeneticlocusattheendsofalleukaryoticchromosomes.TheywereproposedtocapchromosomespreventingtheendtoendfusionsbetweenbrokenendsandcontinualterminalDNAlossduringreplication.Theyalsohaveinfluencesonmembranechromosomeinteractionandthe…  相似文献   

9.
Despite the collective efforts of the international community to sequence the complete rice genome, telomeric regions of most chromosome arms remain uncharacterized. In this report we present sequence data from subtelomere regions obtained by analyzing telomeric clones from two 8.8 × genome equivalent 10-kb libraries derived from partial restriction digestion with HaeIII or Sau3AI (OSJNPb HaeIII and OSJNPc Sau3AI). Seven telomere clones were identified and contain 25–100 copies of the telomere repeat (CCCTAAA)n on one end and unique sequences on the opposite end. Polymorphic sequence-tagged site markers from five clones and one additional PCR product were genetically mapped on the ends of chromosome arms 2S, 5L, 10S, 10L, 7L, and 7S. We found distinct chromosome-specific telomere-associated tandem repeats (TATR) on chromosome 7 (TATR7) and on the short arm of chromosome 10 (TATR10s) that showed no significant homology to any International Rice Genome Sequencing Project (IRGSP) genomic sequence. The TATR7, a degenerate tandem repeat which is interrupted by transposable elements, appeared on both ends of chromosome 7. The TATR10s was found to contain an inverted array of three tandem repeats displaying an interesting secondary folding pattern that resembles a telomere loop (t-loop) and which may be involved in a protective function against chromosomal end degradation.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Expression of surface antigen genes in Trypanosoma brucei occurs at expression sites located near telomeres. Since only one antigen is produced at a time, a mechanism must exist to prevent the simultaneous activity of multiple expression sites. Here we report that PstI and PvuII restriction sites in silent telomeric antigen genes are partially uncleavable , presumably as a consequence of DNA modification. The modification, which is absent in transcribed genes but returns after gene inactivation, may be specific for telomeric DNA because (1) it is not detected in non-telomeric genes; (2) modification is highest close to the telomere; (3) the level of modification in a telomeric gene is influenced by the size of the telomeric DNA segment downstream. Whether telomere modification is cause or consequence of antigen gene switch-off remains to be determined.  相似文献   

11.
Li J  He S  Zhang L  Hu Y  Yang F  Ma L  Huang J  Li L 《Protoplasma》2012,249(1):207-215
Some reports have shown that nucleolar organizer regions are located at the telomeric region and have a structural connection with telomeres at the cellular level in many organisms. In this study, we found that all 45S ribosomal DNA (rDNA) signals were located at telomeric regions on the chromosomes in Chrysanthemum segetum L., and the 45S rDNA showed distinct signal patterns on different metaphase chromosome spreads. The bicolor fluorescence in situ hybridization experiment on the extended fibers revealed that telomere repeats were structurally connected with or interspersed into rDNA sequences. The close cytological structure relation between rDNA and telomere sequences led us to use PCR with combinations of the telomere primer and the rDNA primer to obtain some fragments, which were flanked by different rDNA and telomere primer sequences. One representative clone CHS2 contains closely connected rDNA and telomere sequences, suggesting that the telomere sequence invaded into the conserved rDNA sequence. In addition, the sequences of some PCR clones were flanked by the single telomeric primer sequence or the rDNA primer sequence. These results suggested that homologous recombination occurred between tandem repeat units of rDNA sequences or telomere repeats at the chromosome terminus.  相似文献   

12.
Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminal Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB21–64) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB21–64 and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.  相似文献   

13.
14.
BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG)n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescencein situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.  相似文献   

15.
The molecular and cytological organization of the telomeric repeat (TR) and the subtelomeric repeat (TGR1) of tomato were investigated by fluorescence in situ hybridization (FISH) techniques. Hybridization signals on extended DNA fibres, visualized as linear fluorescent arrays representing individual telomeres, unequivocally demonstrated the molecular co-linear arrangement of both repeats. The majority of the telomeres consisted of a TR and a TGR1 region separated by a spacer. Microscopic measurements of the TR and TGR1 signals revealed high variation in length of both repeats, with maximum sizes of 223 and 1330 kb, respectively. A total of 27 different combinations of TR and TGR1 was detected, suggesting that all chromosome ends have their own unique telomere organization. The fluorescent tracks on the extended DNA fibres were subdivided into four classes: (i) TR–spacer–TGR1; (ii) TR–TGR1; (iii) only TR; (iv) only TGR1. FISH to pachytene chromosomes enabled some of the TR/TGR1 groups to be assigned to specific chromosome ends and to interstitial regions. These signals also provided evidence for a reversed order of the TR and TGR1 sites at the native chromosome ends, suggesting a backfolding telomere structure with the TGR1 repeats occupying the most terminal position of the chromosomes. The FISH signals on diakinesis chromosomes revealed that distal euchromatin areas and flanking telomeric heterochromatin remained highly decondensed around the chiasmata in the euchromatic chromosome areas. The rationale for the occurrence and distribution of the TR and TGR1 repeats on the tomato chromosomes are discussed.  相似文献   

16.
BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG)n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescencein situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.  相似文献   

17.
Rice proteins that bind single-stranded G-rich telomere DNA   总被引:4,自引:0,他引:4  
In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.  相似文献   

18.
BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG) n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescence in situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.  相似文献   

19.
Telomeric heterochromatin plays an essential role in telomere function, including the regulation of telomere length. We observe that in Saccharomyces cerevisiae an imbalance in the dosage of genes for two protein components of heterochromatin (namely Sir3p and histone H4) causes modifications in telomere length and telomere sequence organization. The effects of Sir3p/H4 imbalance were analyzed in yeast strains in which the wild-type SIR3 gene (normally a single-copy gene) was either absent or present in 20–30 copies, and both histone H4 genes (HHF1 and HHF2) were present or HHF1 was deleted, thus covering a wide range of viable gene-dosage combinations. Modifications of telomeres and of subtelomeric regions were identified by analyzing both the overall telomere population and by focusing on two single telomeric regions: the left telomere of chromosome III (LIII) and the right telomere of chromosome XI (RXI). The modifications induced by alteration of the Sir3p/H4 ratio consist of a reduction in the length and an increase in the instability of the terminal block of (C1–3A)n repeats and in susceptibility to insertion of Y′ elements into this repeat element. Restoration of the wild-type gene ratio (by removal of the extra copies of SIR3 or by complementation with the missing second copy of HHF) restored the original telomere organization, both with respect to the length of the (C1–3A)n repeat stretch and the absence of Y′ elements. This behavior shows that the stability of the wild-type sequence organization requires maintenance of the normal structure of telomeric heterochromatin. Received: 23 March 1999 / Accepted: 10 June 1999  相似文献   

20.

Background

The abasic sites represent one of the most frequent lesions of DNA and most of the events able to generate such modifications involve guanine bases. G-rich sequences are able to form quadruplex structures that have been proved to be involved in several important biological processes.

Methods

In this paper, we report investigations, based on calorimetric, UV, CD and electrophoretic techniques, on 12 oligodeoxynucleotides analogues of the quadruplex forming human telomere sequence d[TA(G3T2A)3G3], in which each guanine has been replaced, one at a time, by an abasic site mimic.

Results

Although all data show that the modified sequences preserve their ability to form quadruplex structures, the thermodynamic parameters clearly indicate that the presence of an abasic site decreases their thermal stability compared to the parent unmodified sequence, particularly if the replacement concerns one of the guanosines involved in the formation of the central G-tetrad.

Conclusions

The collected data indicate that the effects of the presence of abasic site lesions in telomeric quadruplex structures are site-specific. The most dramatic consequences come out when this lesion involves a guanosine in the centre of a G-run.

General significance

Abasic sites, by facilitating the G-quadruplex disruption, could favour the formation of the telomerase primer. Furthermore they could have implications in the pharmacological approach targeting telomere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号