首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
表观遗传(epigenetics)是指DNA序列不发生变化但基因表达却发生了可遗传的改变.表观遗传调控过程十分复杂,主要包括DNA甲基化、组蛋白修饰和微小RNA(miRNA)等.糖尿病是一种慢性代谢性疾病,常伴随大血管和微血管并发症.糖尿病的发生、发展不仅取决于遗传因素,而且也受到表观遗传修饰的调控.因此,对表观遗传调控的研究将为糖尿病及其并发症的预防和治疗提供新的思路和方法.  相似文献   

2.
Genetic approaches to understanding the role of epigenetic regulation of gene expression in plants and its mechanisms have revealed several new components. Rapidly accumulating information from other eukaryotes provides complementary knowledge with important implications for plant research. Comparison of epigenetic events across species is proving critical for defining the mechanisms and functions of epigenetic modification, including those specific to plants.  相似文献   

3.
The microenvironment plays a significant role in human cancer progression. However, the role of the tumor microenvironment in the epigenetic control of genes critical to cancer progression remains unclear. As transient E-cadherin expression is central to many stages of neoplasia and is sensitive to regulation by the microenvironment, we have studied if microenvironmental control of E-cadherin expression is linked to transient epigenetic regulation of its promoter, contributing to the unstable and reversible expression of E-cadherin seen during tumor progression. We used 3D, bioengineered human tissue constructs that mimic the complexity of their in vivo counterparts, to show that the tumor microenvironment can direct the re-expression of E-cadherin through the reversal of methylation-mediated silencing of its promoter. This loss of DNA methylation results from the induction of homotypic cell-cell interactions as cells undergo tissue organization. E-cadherin re-expression is associated with multiple epigenetic changes including altered methylation of a small number of CpGs, specific histone modifications, and control of miR-148a expression. These epigenetic changes may drive the plasticity of E-cadherin-mediated adhesion in different tissue microenvironments during tumor cell invasion and metastasis. Thus, we suggest that epigenetic regulation is a mechanism through which tumor cell colonization of metastatic sites occurs as E-cadherin-expressing cells arise from E-cadherin-deficient cells.  相似文献   

4.
Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.  相似文献   

5.
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".  相似文献   

6.
随着对癌症研究的不断深入,表观遗传调控在癌症发生发展中的作用也越来越受到人们的关注。DNA基化作为一种重要的表观遗传修饰机制,在基因表达调控中起着十分重要的作用。该文对DNA基化模式及其在癌症中的作用作了综述,并对DNA甲基化作为癌症早期诊断的生物标记以及癌症表观治疗的新策略作了总结和展望。  相似文献   

7.
8.
During mammalian evolution, complex systems of epigenetic gene regulation have been established: Epigenetic mechanisms control tissue-specific gene expression, X chromosome inactivation in females and genomic imprinting. Studying DNA sequence conservation in imprinted genes, it becomes evident that evolution of gene function and evolution of epigenetic gene regulation are tightly connected. Furthermore, comparative studies allow the identification of DNA sequence features that distinguish imprinted genes from biallelically expressed genes. Among these features are CpG islands, tandem repeats and retrotransposed elements that are known to play major roles in epigenetic gene regulation. Currently, more and more genetic and epigenetic data sets become available. In future, such data sets will provide the basis for more complex investigations on epigenetic variation in human populations. Therein, an exciting topic will be the genetic and epigenetic variability of imprinted genes and its input on human disease.  相似文献   

9.
Proper establishment and faithful maintenance of epigenetic information is crucial for the correct development of complex organisms. For mammals, it is now accepted that DNA methylation is an important mechanism for establishing stable heritable epigenetic marks. The distribution of methylation in the genome is not random, and patterns of methylated and unmethylated DNA are well regulated during normal development. The molecular mechanisms by which methylation patterns are established and maintained are complex and just beginning to be understood. In this review, we summarize recent progress in understanding the regulation of mammalian DNA methylation patterns, with an emphasis on the emerging roles of several protein and possible RNA factors. We also revisit the stochastic model of maintenance methylation and discuss its implications for epigenetic fidelity and gene regulation.  相似文献   

10.
Epigenetics is defined as "the study of mitotically and/or meiotically heritable changes in gene expression that cannot be explained by changes in the DNA sequence". Setting up the epigenetic program is crucial for correct development and its stable inheritance throughout its lifespan is essential for the maintenance of the tissue- and cell-specific functions of the organism. For many years, the genetic causes of cancer have hold centre stage. However, the recent wealth of information about the molecular mechanisms which, by modulating the chromatin structure, can regulate gene expression has high-lighted the predominant role of epigenetic modifications in the initiation and progression of numerous pathologies, including cancer. The nucleosome is the major target of these epigenetic regulation mechanisms. They include a series of tightly interconnected steps which starting with the setting ("writing") of the epigenetic mark till its "reading" and interpretation will result in long-term gene regulation. The major epigenetic changes associated with tumorigenesis are aberrant DNA methylation of CpG islands located in the promoter region of tumor suppressor gene, global genomic hypomethylation and covalent modifications of histone N-terminal tails which are protruding out from the nucleosome core. In sharp contrast with genetic modifications, epigenetic modifications are highly dynamic and reversible. The characterization of specific inhibitors directed against some key epigenetic players has opened a new and promising therapeutic avenue, the epigenetic therapy, since some inhibitors are already used in clinical trials.  相似文献   

11.
12.
13.
Aberrant epigenetic alterations play a decisive role in cancer initiation and propagation via the regulation of key tumor suppressor genes and oncogenes or by modulation of essential signaling pathways. Autophagy is a highly regulated mechanism required for the recycling and degradation of surplus and damaged cytoplasmic constituents in a lysosome dependent manner. In cancer, autophagy has a divergent role. For instance, autophagy elicits tumor promoting functions by facilitating metabolic adaption and plasticity in cancer stem cells (CSCs) and cancer cells. Moreover, autophagy exerts pro-survival mechanisms to these cancerous cells by influencing survival, dormancy, immunosurveillance, invasion, metastasis, and resistance to anti-cancer therapies. In addition, recent studies have demonstrated that various tumor suppressor genes and oncogenes involved in autophagy, are tightly regulated via different epigenetic modifications, such as DNA methylation, histone modifications and non-coding RNAs. The impact of epigenetic regulation of autophagy in cancer cells and CSCs is not well-understood. Therefore, uncovering the complex mechanism of epigenetic regulation of autophagy provides an opportunity to improve and discover novel cancer therapeutics. Subsequently, this would aid in improving clinical outcome for cancer patients. In this review, we provide a comprehensive overview of the existing knowledge available on epigenetic regulation of autophagy and its importance in the maintenance and homeostasis of CSCs and cancer cells.  相似文献   

14.
In this article, we review environmentally mediated epigenetic regulation in plants using two case histories. One of these, vernalization, mediates adaptation of plants to different environments and it exemplifies processes that are reset in each generation. The other, virus-induced silencing, involves transgenerationally inherited epigenetic modifications. Heritable epigenetic marks may result in heritable phenotypic variation, influencing fitness, and so be subject to natural selection. However, unlike genetic inheritance, the epigenetic modifications show instability and are influenced by the environment. These two case histories are then compared with other phenomena in plant biology that are likely to represent epigenetic regulation in response to the environment.  相似文献   

15.
Epigenetic factors have recently emerged as key regulators of the defense response to pathogens in plants. The epigenetic mechanisms underlying defense regulation have been investigated mostly in Arabidopsis, while our understanding of the epigenetic regulation of defense in rice is limited. In this review, we summarize recent findings surrounding epigenetic mechanisms for defense in rice, primarily focusing on DNA methylation, histone modification, and small RNA regulation. In particular, we focused on RNA-directed DNA methylation (RdDM) and other epigenetic regulatory mechanisms that are involved in disease resistance. Finally, we explored potential epigenetic factors that might regulate the defense response in rice by analyzing available microarray data that can be used to uncover details of epigenetics regulation.  相似文献   

16.
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.  相似文献   

17.
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.  相似文献   

18.
19.
Cancer is being reinterpreted due to recent discoveries related to epigenetic regulation during development, and the importance of epigenetic mechanisms in initiation and progression of cancer has been further highlighted by the recent explosion in medical information. Osteosarcoma is highly genetically unstable, and current therapeutic regimens are subject to chemoresistance and tumor relapse. Understanding the epigenetic mechanisms in the pathogenesis of osteosarcoma will provide novel avenues for cancer therapy. In this review, we examine the epigenetic alterations in gene expression in osteosarcoma, and discuss the utilization of epigenetic regulation therapy in treatment against osteosarcoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号