首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apo C-III plays an important role in the metabolism of plasma triglyceride, which can delay the catabolism of triglyceride-rich lipoproteins by interfering with apo E-mediated receptor clearance of remnant particles from plasma. The mechanism of the interference has not yet been defined. To further explore the role of apo C-III, we first injected mice with 125I-apo C-III. The measurement of radioactivity showed that liver took up 3.3-10 fold as much radioactivity as other organs such as heart, spleen, lung, kidney, stomach, large intestine, small intestine, and muscle. This was confirmed by incubating the tissue homogenates of the organs with 125I-apo C-III that the radiolabeled apo C-III specifically bound to only hepatic homogenate. To investigate which subcellular part or parts of hepatic cells play the role of binding to apo C-III, hepatic cell components of nucleus, mitochondria, microsomes and plasma membranes were then incubated with 125I-apo C-III. The radiolabeled apo C-III could specifically bind to only hepatic plasma membranes. Finally hepatic plasma membranes were purified to study the characteristics of the specific binding with apo C-III. Addition of increasing concentration of 125I-apo C-III to human hepatic plasma membranes revealed saturable binding to membranes with a Kd of 0.31±0.07 mol/l. The maximum specific binding capacity was 1.74±0.45 apo C-III/mg membrane protein. In competition studies using unlabeled apo C-III and isolated lipoproteins HDL, LDL and VLDL, only apo C-III and VLDL effectively competed with 125I-apo C-III for membrane binding. The binding of 125I-apo C-III to human liver plasma membranes was Ca2+-independent, and was abolished when plasma membranes were treated with trypsin. The characteristics of 125I-apo C-III binding to mouse liver plasma membranes were similar to those of human liver plasma membranes with the exception of a binding maximum of 1.52±0.39 apo C-III/mg membrane protein. We conclude that apo C-III exhibits high-affinity binding to hepatic plasma membranes, which is saturable, reverse and specific.  相似文献   

2.
Rat apolipoprotein (apo) A-I and A-IV, isolated from both lymph chylomicrons and serum high density lipoproteins (HDL) were analyzed by isoelectric focusing. Lymph chylomicron apo A-I consisted for 81 +/- 2% of the pro form and for 19 +/- 2% of the mature form, while apo A-I isolated from serum HDL was present for 36 +/- 4% in the pro form and for 64 +/- 4% in the mature form. Apo A-IV also showed two major protein bands after analysis by isoelectric focusing. The most prominent component is the more basic protein that amounts to 80 +/- 2% in apo A-IV isolated from lymph chylomicrons and to 60 +/- 3% in apo A-IV isolated from serum HDL. Apo A-I (or apo A-IV), isolated from both sources (lymph chylomicrons or serum HDL), was iodinated and the radioactive apolipoproteins were incorporated into rat serum lipoproteins. The resulting labeled HDL was isolated from serum by molecular sieve chromatography on 6% agarose columns and injected intravenously into rats. No difference in the fractional turnover rate or the tissue uptake of the two labeled HDL preparations was observed, neither for apo A-I nor for apo A-IV. It is concluded that the physiological significance of the extracellular pro apo A-I conversion or the post-translational modification of apo A-IV is not related to the fractional turnover rate in serum or to the rate of catabolism in liver and kidneys.  相似文献   

3.
The influence of copper deficiency on the binding and uptake of apolipoprotein E-free high density lipoprotein (apo E-free HDL) in cultured rat hepatic parenchymal cells was examined in this study. Male weanling Sprague-Dawley rats were randomly divided into two treatments, a Cu-adequate (7.33 mg Cu/kg diet) or a Cu-deficient (1.04 mg Cu/kg diet) group. After 7 weeks, plasma apo E-free HDL were isolated by a combination of ultracentrifugation, gel filtration, and heparin-Sepharose affinity chromatography. Parenchymal cells were isolated from collagenase perfused liver of Cu-deficient and adequate rats and cultured for 16 hours at 37 degrees C prior to incubation with iodinated apo E-free HDL from the same treatment group. Cells were incubated with 5 microg/ml(125) I-apo E-free HDL for 2, 6, or 12 hours in the presence or absence of 200 microg/ml (40-fold) excess unlabeled apo E-free HDL. Increases in specific binding at 4 degrees C and specific cell-associated uptake at 37 degrees C as a function of time were observed with cells and HDL from Cu-deficient rats. Cells were also incubated for 6 hours with 8 concentrations of (125)I-apo E-free HDL in the presence or absence of excess unlabeled HDL. Although no significant increase in specific binding was detected at 4 degrees C as a function of ligand concentration, the response tended to be higher at 5 to 15 microg HDL/ml for the Cu-deficient treatment. However, at 37 degrees C the specific cell-associated uptake was increased markedly with cells and HDL from Cu-deficient rats. The observed increases in HDL binding and uptake indicate that these processes may be enhanced in Cu-deficient rats. These data are also consistent with recent in vivo results which indicate that plasma clearance and tissue uptake of HDL are increased in Cu-deficient rats.  相似文献   

4.
Copper deficiency in rats raises plasma cholesterol concentration while reducing live cholesterol concentration. One consequence of this cholesterol redistribution is the accumulation of a large high-density lipoprotein (HDL) particle rich in apolipoprotein E (apo E). The purpose of this study was to determine, using an in vitro binding assay, if the interaction of apo E-rich HDL with hepatic lipoprotein binding sites may be affected by copper deficiency. Male Sprague-Dawley rats were divided into two dietary treatments (copper-deficient and -adequate) and placed on a dietary regimen for 8 weeks. Subsequent to exsanguination, hepatic plasma membranes were prepared and apo E-rich HDL was isolated from rats of each treatment by ultracentrifugation, agarose column chromatography, and heparin-Sepharose affinity chromatography. Total binding and experimentally derived specific binding of 125I-apo E-rich HDl to hepatic plasma membranes indicated greater binding when lipoproteins and membranes from copper-deficient animals were used in the assay compared to controls. Scatchard analysis of specific binding data indicated that equilibrium binding affinity (Kd) was also affected by copper deficiency. The hepatic binding sites recognizing apo E-rich HDL were not affected by EDTA or pronase, of relatively high capacity, and recognized a variety of other rat lipoproteins.  相似文献   

5.
Apolipoprotein A-IV is a member of the apo A-I/C-III/A-IV gene cluster. In order to investigate its hypothetical coordinated regulation, an acute phase was induced in pigs by turpentine oil injection. The hepatic expression of the gene cluster as well as the plasma levels of apolipoproteins were monitored at different time periods. Furthermore, the involvement of the inflammatory mediators' interleukins 1 and 6 and tumor necrosis factor in the regulation of this gene cluster was tested in cultured pig hepatocytes, incubated with those mediators and apo A-I/C-III/A-IV gene cluster expression at the mRNA level was measured. In response to turpentine oil-induced inflammation, a decreased hepatic apo A-IV mRNA expression was observed (independent of apo A-I and apo C-III mRNA) not correlating with the plasma protein levels. The distribution of plasma apo A-IV experienced a shift from HDL to larger particles. In contrast, the changes in apo A-I and apo C-III mRNA were reflected in their corresponding plasma levels. Addition of cytokines to cultured pig hepatocytes also decreased apo A-IV and apo A-I mRNA levels. All these results show that the down-regulation of apolipoprotein A-I and A-IV messages in the liver may be mediated by interleukin 6 and TNF-alpha. The well-known HDL decrease found in many different acute-phase responses also appears in the pig due to the decreased expression of apolipoprotein A-I and the enlargement of the apolipoprotein A-IV-containing HDL.  相似文献   

6.
[3H]Triacylglycerol-labelled chylomicrons were isolated from intestinal lymph, obtained from rats made hypolipidaemic by treatment with pharmacological amounts of 17 alpha-ethynyloestradiol. Oestrogen treatment results in a large reduction in the content of apolipoproteins (apo) E and C of lymph chylomicrons. Upon incubation in vitro with freshly isolated parenchymal and non-parenchymal cells the apo E-, apo C-poor chylomicrons became readily cell-associated. With increasing chylomicron concentrations this cell-association was saturable and half-maximal cell-association was achieved at about 0.55 mg of triacylglycerol/ml. The cell-association was time- and temperature-dependent. A more than 90% inhibition of the cell-association of the [3H]triacylglycerol moiety was observed with both parenchymal and non-parenchymal cells when pure apo C-III (12.6 micrograms/mg of triacylglycerol) was incorporated into the chylomicrons. These data indicate that apo E-, apo C-poor chylomicrons are bound to both parenchymal and non-parenchymal liver cells at a high-affinity site of limited capacity and that binding to this site is strongly inhibited by apo C-III. With apo C-III-enriched chylomicrons simultaneous determination of the cell-association of the 125I-apo C-III and the [3H]triacylglycerol moiety indicated that more 125I-apo C-III becomes associated to the cells than expected on the basis of [3H]triacylglycerol radioactivity measurements. It is suggested that upon cell-association of apo C-III its binding to the chylomicron particles is lost. Consequently the occupation of the cellular recognition site by apo C-III prevents further chylomicron binding and thus leads to a decrease of the cell-association level of the [3H]triacylglycerol moiety. Apo E enrichment of the chylomicrons led to an increased cell-association rate with parenchymal cells and to a marked increase of the cell-association level with non-parenchymal cells. The cell-association of the apo E radioactivity followed closely the [3H]triacylglycerol radioactivity, indicating that the particle-apo E complex is bound as a unity. The apo E effects were opposed by apo C-III. With apo E-, apo C-III-enriched chylomicrons more 125I-apo E became associated with the cells than could be expected on the basis of the [3H]triacylglycerol measurements. It is concluded that apo C-III can weaken the interaction of apo E with the chylomicrons leading to the cell-association of free apo E. It appears that subtle changes in the apo E and/or apo C-III content of chylomicrons can influence the interaction with both parenchymal and non-parenchymal liver cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The ability of rat intestine and liver to synthesize the main constitutive apoproteins of HDL (apolipoproteins (apo) A-I, A-IV and E) was studied by incorporation of [3H]leucine in vitro at different stages of perinatal life. In both organs, apoprotein synthesis was barely detectable at day 18 of gestation; it was initiated 2 days before the end of gestation. Apo A-I synthesis leveled off at birth in the intestine but kept increasing in the liver during suckling. Intestinal apo A-IV and hepatic apo E synthesis became stable 5 days after birth. Hormonal determination of apo A-I synthesis was examined at different ages in jejunum cultured for 48 h in vitro in the presence of effectors. The addition of dexamethasone to the culture medium was without effect on intestine explanted either at day 18 of gestation or at different postnatal ages (0, 2 and 5 days), but induced the specific stimulation of apo A-I synthesis at day 20 of gestation. At this stage, triiodothyronine alone was ineffective, whereas it enhanced the dexamethasone-induced stimulation. Apo A-I synthesis remained unaffected by insulin alone or combined with the glucocorticoid. Administration of cortisone acetate to pregnant rats from day 14 of gestation onwards resulted in a stimulation of apo A-I synthesis only when it was prolonged after the 20th day of gestation. No effect of dietary substrates could be obtained in vitro. It is concluded that glucocorticoids specifically potentiate prenatal apo A-I synthesis in the rat intestine but that their action is limited to the days immediately preceding birth. They cannot induce early maturation nor stimulate existing synthesis.  相似文献   

8.
Roux-en-Y gastric bypass surgery (RYGBP) leads to improvements in satiety and obesity-related comorbidities. The mechanism(s) underlying these improvements are not known but may be revealed in part by discovery proteomics. Therefore, fasting plasma was collected from 12 subjects (mean BMI >45) during RYGBP and during a second procedure approximately 17 months later. Body weight, obesity-related comorbidities, and medication use were decreased after RYGBP. Mass spectrometry-based proteomic analysis was performed on a subset of seven samples using isobaric isotope-coded affinity tags (four plex iTRAQ). Initial proteomic analysis (n = 7) quantified and identified hundreds of plasma proteins. Manual inspection of the data revealed a 2.6 +/- 0.5-fold increase in apolipoprotein A-IV (apo A-IV, gene designation: APOA4), a approximately 46-kDa glycoprotein synthesized mainly in the bypassed small bowel and liver after RYGBP. The change in apo A-IV was significantly greater than other apolipoproteins. Immunoblot analysis of the full longitudinal sample set (n = 12) indicated even higher increases (8.3 +/- 0.2 fold) in apo A-IV. Thus iTRAQ may underestimate the changes in protein concentrations compared to western blotting of apo A-IV. Apo A-IV inhibits gastric emptying and serves as a satiety factor whose synthesis and secretion are increased by the ingestion of dietary fat. It also possesses anti-inflammatory and antiatherogenic properties. Based on these functions, we speculate changes in apo A-IV may contribute to weight loss as well as the improvements in inflammation and cardiovascular disease after RYGBP. In addition, the findings provide evidence validating the use of iTRAQ proteomics in discovery-based studies of post-RYGBP improvements in obesity-related medical comorbidities.  相似文献   

9.
High-density lipoprotein (HDL) is the most abundant lipoprotein particle in the plasma and a negative risk factor of atherosclerosis. By using a proteomic approach it is possible to obtain detailed information about its protein content and protein modifications that may give new information about the physiological roles of HDL. In this study the two subfractions; HDL(2) and HDL(3), were isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix-assisted laser desorption/ionisation time of flight mass spectrometry. Identified proteins in HDL were: the dominating apo A-I as six isoforms, four of them with a glycosylation pattern and one of them with retained propeptide, apolipoprotein (apo) A-II, apo A-IV, apo C-I, apo C-II, apo C-III (two isoforms), apo E (five isoforms), the recently discovered apo M (two isoforms), serum amyloid A (two isoforms) and serum amyloid A-IV (six isoforms). Furthermore, alpha-1-antitrypsin was identified in HDL for the first time. Additionally, salivary alpha-amylase was identified as two isoforms in HDL(2), and apo L and a glycosylated apo A-II were identified in HDL(3). Besides confirming the presence of different apolipoproteins, this study indicates new patterns of glycosylated apo A-I and apo A-II. Furthermore, the study reveals new proteins in HDL; alpha-1-antitrypsin and salivary alpha-amylase. Further investigations about these proteins may give new insight into the functional role of HDL in coronary artery diseases.  相似文献   

10.
The focus of this article is to review evidence that apolipoprotein A-IV (apo A-IV) acts as a satiety factor. Additionally, information regarding the general involvement of apo A-IV in the regulation of food intake and body weight is stated. Apo A-IV is a glycoprotein synthesized by the human intestine. In rodents, both the small intestine and liver secrete apo A-IV, but the small intestine is the major organ responsible for circulating apo A-IV. There is now solid evidence that the hypothalamus, especially the arcuate nucleus, is another active site of apo A-IV expression. Intestinal apo A-IV synthesis is markedly stimulated by fat absorption and does not appear to be mediated by the uptake or reesterification of fatty acids to form triglycerides. Rather, the local formation of chylomicrons acts as a signal for the induction of intestinal apo A-IV synthesis. Intestinal apo A-IV synthesis is also enhanced by a factor from the ileum, probably peptide tyrosine-tyrosine (PYY). The inhibition of food intake by apo A-IV is mediated centrally. The stimulation of intestinal synthesis and secretion of apo A-IV by lipid absorption are rapid; thus apo A-IV likely plays a role in the short-term regulation of food intake. Other evidence suggests that apo A-IV may also be involved in the long-term regulation of food intake and body weight, as it is regulated by both leptin and insulin. Chronic ingestion of a high-fat diet blunts the intestinal as well as the hypothalamic apo A-IV response to lipid feeding. It also suppresses apo A-IV gene expression in the hypothalamus. Whereas it is tempting to speculate that apo A-IV may play a role in diet-induced obesity, we believe the confirmation of such a proposal awaits further experimental evidence.  相似文献   

11.
N H Fidge 《FEBS letters》1986,199(2):265-268
The existence of a cell receptor which recognises plasma high density lipoprotein (HDL) has been suggested from studies which demonstrate specific binding of HDL3 to cultured cells derived from various tissues in the body. This study provides evidence of a specific HDL-binding protein in crude plasma membranes prepared from rat kidney and liver. Following separation of solubilised membrane proteins on polyacrylamide gel slabs and 'Western' blotting, one major band was identified which bound HDL3, or apo AI or apo AII. The protein, which was present in both liver and kidney membranes, was partially purified by repetitive preparative SDS-polyacrylamide gel electrophoresis and although accompanied by considerable loss of binding activity, could still be detected by the ligand-blotting procedure used initially to detect its presence in cell membranes.  相似文献   

12.
We have used a preparation of rat liver plasma membranes to study the binding of rat apolipoprotein E-deficient HDL to rat liver. The membranes were found to bind HDL by a saturable process that was competed for by excess unlabeled HDL. The binding was temperature-dependent and was 85% receptor-mediated when incubated at 4, 22 and 37 degrees C. The affinity of the binding site for the HDL was consistent at all temperatures, while the maximum binding capacity increased at higher temperatures. The specific binding of HDL to the membranes did not require calcium and was independent of the concentration of NaCl in the media. The effect of varying the pH of the media on HDL binding was small, being 30% higher at pH 6.5 than at pH 9.0. Both rat HDL and human HDL3 were found to compete for the binding of rat HDL to the membranes, whereas rat VLDL remnants and human LDL did not compete. At 4 degrees C, complexes of dimyristoylphosphatidylcholine (DMPC) and apolipoproteins A-I, A-IV and the C apolipoproteins, but not apolipoprotein E, competed for HDL binding to the membranes. At 22 and 37 degrees C, all DMPC-apolipoprotein complexes competed to a similar extent, DMPC vesicles that contained no protein did not compete for the binding of HDL. These results suggest that the rat liver possesses a specific receptor for apolipoprotein E-deficient HDL that recognizes apolipoproteins A-I, A-IV and the C apolipoproteins as ligands.  相似文献   

13.
We have investigated the binding of human apolipoprotein A-IV (apo A-IV) to human hepatocellular plasma membranes. Addition of increasing concentrations of radiolabeled apo A-IV to hepatic plasma membranes, in the presence and absence of a 25-fold excess of unlabeled apo A-IV, revealed saturation binding to the membranes with a KD of 154 nM and a binding maximum of 1.6 ng/microgram of membrane protein. The binding was temperature-insensitive, partially calcium-dependent, abolished when apo A-IV was denatured by guanidine hydrochloride or when the membranes were treated with Pronase and decreased when apo A-IV was incorporated into phospholipid/cholesterol proteoliposomes. In displacement studies using purified apolipoproteins and isolated lipoproteins, only unlabeled apo A-IV, apo A-I and high-density lipoproteins effectively competed with radiolabeled apo A-IV for membrane binding sites. We conclude that human apo A-IV exhibits high-affinity binding to isolated human hepatocellular plasma membranes which is saturable, reversible and specific.  相似文献   

14.
This review discusses the regulation of the intestinal and hypothalamic apolipoprotein A-IV (apo A-IV) gene and protein expression. Apo A-IV is a glycoprotein secreted together with triglyceride-rich lipoproteins by the small intestine. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. This stimulation of intestinal apo A-IV synthesis is attenuated by intravenous leptin infusion. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV in response to dietary lipid. Intestinal apo A-IV synthesis is also stimulated by members of the pancreatic polypeptide family, including peptide YY (PYY), neuropeptide Y (NPY), and pancreatic polypeptide (PP). Recently, apo A-IV was demonstrated to be present in the hypothalamus as well. Hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is intimately regulated by endogenous hypothalamic apo A-IV. Central administration of NPY significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner.  相似文献   

15.
Induction of liver apolipoprotein A-IV mRNA in porphyric mice.   总被引:4,自引:0,他引:4       下载免费PDF全文
We have isolated cDNA clones for mRNAs that are induced by porphyria from a mouse liver library. Of the three inducible clones isolated, we have identified one as being apolipoprotein A-IV (apo A-IV) by its extensive homology with a rat apolipoprotein A-IV cDNA sequence. The level of liver apo A-IV mRNA increases rapidly in response to either of two porphyrogenic drugs. When the ferrochelatase-inhibited drug, 3,5-dicarbethoxy-1,4-dihydrocollidine (DDC) is used, a 6 and 28 fold induction of liver apo A-IV mRNA is observed in male and female mice, respectively. If the heme-destroying porphyrogenic drug, allylisopropylacetamide (AIA) is the inducing agent, liver apo A-IV mRNA levels increase 2-3 fold in both males and females. The level of apo A-IV mRNA reaches a maximum within 6-10 hr. after drug administration. Intestine apo A-IV mRNA levels do not change during either of these drug-induced porphyrias. RNA from acute-phase responsive liver or liver from mice treated with bilirubin, porphobilinogen, or protoporphyrin IX show no increase in apo A-IV mRNA. These results indicate that apo A-IV induction is tied to a disruption in porphyrin-heme biosynthesis but is not directly affected by several heme intermediates nor by the major heme degradation product, bilirubin.  相似文献   

16.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I.  相似文献   

17.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

18.
Lipoprotein distribution in rat plasma determined after sequential ultracentrifugation (requiring 8 days of centrifugation to separate lipoproteins in five density classes), was compared to estimates based upon cumulative density ultracentrifugation (46 hr of ultracentrifugation). In general comparable values were obtained by the two methods with regard to protein, total cholesterol, cholesteryl ester, free cholesterol, and triacylglycerol distribution. However, the HDL3 protein concentration found by sequential ultracentrifugation was only about 50% of that found after the cumulative procedure. Apolipoproteins in lipoproteins isolated by the two methods were well separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Color of the stained bands was extracted and read photometrically. A linear standard curve was obtained with albumin. Absorbance corresponding to 1 microgram/ml was 0.057. Below d = 1.100 g/ml (HDL2b) the two ultracentrifugation methods gave comparable results for all apoproteins. In contrast to this the level of apo A-I, apo E, and apo A-IV in the more dense types of HDL was higher when estimated by cumulative than by sequential ultracentrifugation. In HDL3 isolated by sequential ultracentrifugation the apo A-IV, apo E, and apo A-I concentrations were 51, 31, and 45% respectively, of values found after cumulative ultracentrifugation. The results indicate that cumulative density ultracentrifugation, followed by colorimetric determination of apoproteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is a useful approach when studying lipoprotein distribution in rat plasma.  相似文献   

19.
There is good evidence that high density lipoprotein (HDL) interacts with high affinity sites present on hepatocytes. The precise nature of the ligand recognized by putative HDL receptors remains controversial, although there is a consensus that apolipoprotein AI (apoAI) is involved. This suggestion would be strengthened if a biologically active site demonstrating a high affinity for the receptor could be isolated. Cyanogen bromide fragments (CF) of apoAI (CF1-CF4) were complexed with phospholipid, and their ability to associate with the receptor was compared in various binding studies. Careful analysis of the concentration-dependent association of 125I-labeled dimyristoyl phosphatidylcholine (DMPC) recombinants to rat liver plasma membranes revealed high and low affinity binding components. As all DMPC recombinants displayed the low affinity binding component, it was postulated that this interaction was independent of the protein present in the particle and may well represent a lipid-lipid or lipid-protein association with the membranes. Only 125I-labeled CF4.DMPC displayed a high affinity binding component with similar Kd and Bmax (8 x 10(-9) M, 1.6 x 10(-12) mol/mg plasma membrane protein) to that of 125I-labeled AI.DMPC (7 x 10(-9), 1.4 x 10(-12) mol/mg plasma membrane protein). Similarly, egg yolk phosphatidylcholine complexes containing CF4 (CF4.egg PC) showed higher affinity binding than CF1-egg yolk phosphatidylcholine complexes confirming the results obtained with DMPC complexes. Furthermore, ligand blotting studies showed that only 125I-labeled CF4.DMPC associated specifically with HB1 and HB2, two HDL binding proteins recently identified in rat liver plasma membranes. We conclude that a region within the carboxyl-terminus of apoAI is responsible for the interaction with putative HDL receptors present in rat liver plasma membranes.  相似文献   

20.
Adult bovine aortic endothelial (ABAE) cells, exposed to serum-free medium, specifically bind 125I-labeled human high-density lipoprotein (125I-HDL). Addition of human lipoprotein-deficient serum (LPDS) reduces the specific binding of 125I-HDL in a concentration-dependent manner, such that LPDS at a concentration of 6 mg protein/ml almost completely inhibits the specific binding of 125I-HDL. ABAE cultures exposed to 125I-labeled LPDS (125I-LPDS) specifically bind two peptides, which appear as minor iodinated components in 125I-LPDS. The binding of these two components is abolished in the presence of excess amounts of unlabeled LPDS or HDL. Preincubation of ABAE cells with 25-hydroxycholesterol (25-HC) results in an increase in the binding of the two 125I-LPDS components, similar to the increase observed in 125I-HDL binding in the presence of 25-HC. These two LPDS components comigrate on sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) with apolipoproteins A-I and A-IV of molecular masses 28 kDa and 43 kDa respectively. Furthermore, these two proteins were transferred from the SDS gel to nitrocellulose paper and interacted specifically with anti-(A-I) and anti-(A-IV) sera respectively. When ABAE cultures, pretreated with 25-HC in the presence of LPDS, are subjected to cell-surface iodination, the A-IV appears as one of the major proteins on the cell surface accessible to iodination. The interaction of A-IV with the cell surface of 25-HC-treated cells is not specific to ABAE cells and appears also in human skin fibroblasts. Analysis of the relative amounts of various apolipoproteins in the 125I-HDL bound to ABAE cells demonstrates a decrease in the relative amount of iodinated A-II concomitant with increase in the relative amounts of the other iodinated apolipoproteins, when compared to the composition of the native 125I-HDL. These changes are similar whether the binding is done in the presence or absence of LPDS. It indicates that the decrease in 125I-HDL binding in the presence of LPDS is not due to displacement of the iodinated apolipoproteins A-I and A-IV in the 125I-HDL by unlabeled A-I and A-IV present in LPDS. The results indicate that free apolipoproteins A-I and A-IV, present in LPDS, can displace HDL on the cell surface of ABAE cells. Thus, free A-I and A-IV, present in plasma, control the binding of HDL to endothelial cells and may regulate the process of cholesterol removal from the cells performed by HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号