首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The green fluorescent protein (GFP) has become an invaluable marker for monitoring protein localization and gene expression in vivo. Recently a new red fluorescent protein (drFP583 or DsRed), isolated from tropical corals, has been described [Matz, M.V. et al. (1999) Nature Biotech. 17, 969-973]. With emission maxima at 509 and 583 nm respectively, EGFP and DsRed are suited for almost crossover free dual color labeling upon simultaneous excitation. We imaged mixed populations of Escherichia coli expressing either EGFP or DsRed by one-photon confocal and by two-photon microscopy. Both excitation modes proved to be suitable for imaging cells expressing either of the fluorescent proteins. DsRed had an extended maturation time and E. coli expressing this fluorescent protein were significantly smaller than those expressing EGFP. In aging bacterial cultures DsRed appeared to aggregate within the cells, accompanied by a strong reduction in its fluorescence lifetime as determined by fluorescence lifetime imaging microscopy.  相似文献   

2.
We describe here a dual-labeling technique involving the green fluorescent protein (GFP) and the red fluorescent protein (DsRed) for in situ monitoring of horizontal gene transfer via conjugation. A GFPmut3b-tagged derivative of narrow-host-range TOL plasmid (pWWO) was delivered to Pseudomonas putida KT2442, which was chromosomally labeled with dsRed by transposon insertion via biparental mating. Green and red fluorescent proteins were coexpressed in donor P. putida cells. Cells expressing both fluorescent proteins were smaller in size than cells expressing GFP alone. Donors and transconjugants in mixed culture or sludge samples were discriminated on the basis of their fluorescence by using confocal laser scanning microscopy. Conjugal plasmid transfer frequencies on agar surfaces and in sludge microcosms were determined microscopically without cultivation. This method worked well for in situ monitoring of horizontal gene transfer in addition to tracking the fate of microorganisms released into complex environments. To the best of our knowledge, this is the first study that discusses the coexpression of GFP and DsRed for conjugal gene transfer studies.  相似文献   

3.

Background  

DsRed the red fluorescent protein (RFP) isolated from Discosoma sp. coral holds much promise as a genetically and spectrally distinct alternative to green fluorescent protein (GFP) for application in mice. Widespread use of DsRed has been hampered by several issues resulting in the inability to establish and maintain lines of red fluorescent protein expressing embryonic stem cells and mice. This has been attributed to the non-viability, or toxicity, of the protein, probably as a result of its obligate tetramerization. A mutagenesis approach directing the stepwise evolution of DsRed has produced mRFP1, the first true monomer. mRFP1 currently represents an attractive autofluorescent reporter for use in heterologous systems.  相似文献   

4.
Lauf U  Lopez P  Falk MM 《FEBS letters》2001,498(1):11-15
A novel, brilliantly red fluorescent protein, DsRed has become available recently opening up a wide variety of experimental opportunities for double labeling and fluorescence resonance electron transfer experiments in combination with green fluorescent protein (GFP). Unlike in the case of GFP, proteins tagged with DsRed were often found to aggregate within the cell. Here we report a simple method that allows rescuing the function of an oligomeric protein tagged with DsRed. We demonstrate the feasibility of this approach on the subunit proteins of an oligomeric membrane channel, gap junction connexins. Additionally, DsRed fluorescence was easily detected 12-16 h post transfection, much earlier than previously reported, and could readily be differentiated from co-expressed GFP. Thus, this approach can eliminate the major drawbacks of this highly attractive autofluorescent protein.  相似文献   

5.
Traditional method of Agrobacterium‐mediated transformation through the generation of tissue culture had limited success for Setaria viridis, an emerging C4 monocot model. Here we present an efficient in planta method for Agrobacterium‐mediated genetic transformation of S. viridis using spike dip. Pre‐anthesis developing spikes were dipped into a solution of Agrobacterium tumefaciens strain AGL1 harboring the β‐glucuronidase (GUS) reporter gene driven by the cauliflower mosaic virus 35S (CaMV35S) promoter to standardize and optimize conditions for transient as well as stable transformations. A transformation efficiency of 0.8 ± 0.1% was obtained after dipping of 5‐day‐old S3 spikes for 20 min in Agrobacterium cultures containing S. viridis spike‐dip medium supplemented with 0.025% Silwet L‐77 and 200 μm acetosyringone. Reproducibility of this method was demonstrated by generating stable transgenic lines expressing β‐glucuronidase plus (GUSplus), green fluorescent protein (GFP) and Discosoma sp. red fluorescent protein (DsRed) reporter genes driven by either CaMV35S or intron‐interrupted maize ubiquitin (Ubi) promoters from three S. viridis genotypes. Expression of these reporter genes in transient assays as well as in T1 stable transformed plants was monitored using histochemical, fluorometric GUS activity and fluorescence microscopy. Molecular analysis of transgenic lines revealed stable integration of transgenes into the genome, and inherited transgenes expressed in the subsequent generations. This approach provides opportunities for the high‐throughput transformation and potentially facilitates translational research in a monocot model plant.  相似文献   

6.
[目的]对灰葡萄孢菌(Botrytis cinerea)的细胞核和过氧化物酶体进行荧光蛋白标记,为研究其生长发育和侵染过程中细胞结构和细胞器动态提供基础.[方法]以绿色荧光蛋白(GFP)和红色荧光蛋白(DsRED、mCherry)为报告基因,利用根癌农杆菌介导转化(Agrobacterium tumefaciens m...  相似文献   

7.
Improvement of protein quality in transgenic soybean plants   总被引:2,自引:0,他引:2  
Glycinin is one of the abundant storage proteins in soybean seeds. A modified Gy1 (A1aB1b) proglycinin gene with a synthetic DNA encoding four continuous methionines (V3-1) was connected between the hpt gene and the modified green fluorescent protein sGFP(S65T) gene, and a resultant plasmid was introduced into soybean by particle bombardment in order to improve nutritional value of its seeds. After the selection with hygromycin, the efficiency of gene introduction was evaluated. More than 60 % of the regenerated plants tolerant to hygromycin yielded the hpt and V3-1 fragment by polymerase chain reaction (PCR) analysis, and the expression of sGFP was detected in about 50 % of putative transgenic soybeans. Southern hybridization confirmed the presence of transgenes in T0 plants and the transgenic soybeans hybridized with the hpt and V3-1 genes were analyzed showed different banding patterns. Most of the transgenic plants were growing, flowering normally and produced seeds. Analysis of seed obtained from transgenic soybean plants expressing hpt and V3-1 genes showed higher accumulation of glycinin compared with non-transgenic plants. In addition, protein expression in transgenic soybean plants was observed by using 2D-electrophoresis.  相似文献   

8.
The tumor microenvironment (TME) is critical for tumor growth and progression. We have previously developed color‐coded imaging of the TME using a green fluorescent protein (GFP) transgenic nude mouse as a host. However, most donor sources of cell types appropriate for study in the TME are from mice expressing GFP. Therefore, a nude mouse expressing red fluorescent protein (RFP) would be an appropriate host for transplantation of GFP‐expressing stromal cells as well as double‐labeled cancer cells expressing GFP in the nucleus and RFP in the cytoplasm, thereby creating a three‐color imaging model of the TME. The RFP nude mouse was obtained by crossing non‐transgenic nude mice with the transgenic C57/B6 mouse in which the β‐actin promoter drives RFP (DsRed2) expression in essentially all tissues. In crosses between nu/nu RFP male mice and nu/+ RFP female mice, the embryos fluoresced red. Approximately 50% of the offspring of these mice were RFP nude mice. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. GFP‐expressing human cancer cell lines, including HCT‐116‐GFP colon cancer and MDA‐MB‐435‐GFP breast cancer were orthotopically transplanted to the transgenic RFP nude mice. These human tumors grew extensively in the transgenic RFP nude mouse. Dual‐color fluorescence imaging enabled visualization of human tumor–host interaction. The RFP nude mouse model should greatly expand our knowledge of the TME. J. Cell. Biochem. 106: 279–284, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Particle bombardment is a common platform for soybean transformation but tends to cause transgene silencing due to the integration of rearranged or multiple copies of transgenes. We now describe the isolation of a total of 44 independent transgenic soybean plants after transformation by particle bombardment with one of two gene constructs, pHV and pHVS. Both constructs contain the hygromycin phosphotransferase gene (hpt) as a selectable marker and a modified glycinin gene (V3-1) for evaluation of homology-dependent silencing of endogenous glycinin genes; pHVS also contains sGFP(S65T), which encodes a modified form of green fluorescent protein (GFP), as a reporter gene in the flanking region of V3-1. Fluorescence microscopy revealed that the leaves of 8 of the 25 independent transgenic plants obtained with pHVS expressed GFP; most of these GFP-positive plants also contained V3-1 mRNA and an increased glycinin content in their seeds, and they exhibited simple banding patterns on Southern blots that were indicative of a low copy number of each of the three transgenes. In contrast, most of the transgenic plants obtained with pHVS that did not express GFP, as well as most of those obtained with pHV, lacked endogenous glycinin in their seeds and exhibited more complex patterns of transgene integration. The use of a reporter gene such as sGFP(S65T) in addition to an antibiotic resistance gene may thus help to reduce the problem of gene silencing associated with direct DNA transformation systems and facilitate the recovery of transgenic plants that stably express the gene of interest.  相似文献   

10.
Flow cytometric procedures are described to detect a "humanized" version of a new red fluorescent protein (DsRed) from the coral Discosoma sp. in conjunction with various combinations of three Aequorea victoria green fluorescent protein (GFP) variants--EYFP, EGFP, and ECFP. In spite of overlapping emission spectra, the combination of DsRed with EYFP, EGFP, and ECFP generated fluorescence signals that could be electronically compensated in real time using dual-laser excitation at 458 and 568 nm. Resolution of fluorescence signals from DsRed, EYFP, and EGFP was also readily achieved by single-laser excitation at 488 nm. Since many flow cytometers are equipped with an argon-ion laser that can be tuned to 488 nm, the DsRed/EYFP/EGFP combination is expected to have broad utility for facile monitoring of gene transfer and expression in mammalian cells. The dual-laser technique is applicable for use on flow cytometers equipped with tunable multiline argon-ion and krypton-ion lasers, providing the framework for studies requiring simultaneous analysis of four fluorescent gene products within living cells.  相似文献   

11.
Barolo S  Castro B  Posakony JW 《BioTechniques》2004,36(3):436-40, 442
In vivo green fluorescent protein (GFP)/red fluorescent protein (RFP) double-labeling studies have been hampered by several inconvenient properties of DsRed, the first described RFP. These disadvantages include a very slow (> 24 h) maturation time, emission of contaminating green light, and low solubility. A recently developed variant of DsRed, called DsRed.T4, has a much shorter maturation time, no significant green emission, and improved solubility. We have constructed Drosophila P-element transformation vectors encoding DsRed.T4 for promoter/enhancer analysis, labeling of living cells, or RFP tagging of proteins. These new vectors have all of the features of the widely used Pelican/Stinger GFP vectors, including insulator sequences to reduce position effects, an extensive polylinker, and both cytoplasmic and nuclear-localized forms of the reporter. We have also constructed an upstream activating sequence (UAS)-DsRed.T4 vector, for GAL4 activation of the reporter. We find that DsRed.T4 is very easily detected in transgenic flies without contamination of the GFP signal and that it matures to its fluorescent form nearly simultaneously with GFP. This advance in Drosophila reporter technology makes timed double-labeling experiments in developing transgenic animals possible for the first time.  相似文献   

12.
We describe here a dual-labeling technique involving the green fluorescent protein (GFP) and the red fluorescent protein (DsRed) for in situ monitoring of horizontal gene transfer via conjugation. A GFPmut3b-tagged derivative of narrow-host-range TOL plasmid (pWWO) was delivered to Pseudomonas putida KT2442, which was chromosomally labeled with dsRed by transposon insertion via biparental mating. Green and red fluorescent proteins were coexpressed in donor P. putida cells. Cells expressing both fluorescent proteins were smaller in size than cells expressing GFP alone. Donors and transconjugants in mixed culture or sludge samples were discriminated on the basis of their fluorescence by using confocal laser scanning microscopy. Conjugal plasmid transfer frequencies on agar surfaces and in sludge microcosms were determined microscopically without cultivation. This method worked well for in situ monitoring of horizontal gene transfer in addition to tracking the fate of microorganisms released into complex environments. To the best of our knowledge, this is the first study that discusses the coexpression of GFP and DsRed for conjugal gene transfer studies.  相似文献   

13.
14.
Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro. Received: 17 May 1998 / Revision received: 2 September 1998 / Accepted: 23 November 1998  相似文献   

15.
Two tissue-specific promoters were used to express both green fluorescent protein (GFP) and red fluorescent protein (RFP) in transgenic zebrafish embryos. One promoter (CK), derived from a cytokeratin gene, is active specifically in skin epithelia in embryos, and the other promoter (MLC) from a muscle-specific gene encodes a myosin light chain 2 polypeptide. When the 2 promoters drove the 2 reporter genes to express in the same embryos, both genes were faithfully expressed in the respective tissues, skin or muscle. When the 2 fluorescent proteins were expressed in the same skin or muscle cells under the same promoter, GFP fluorescence appeared earlier than RFP fluorescence in both skin and muscle tissues, probably owing to a higher detection sensitivity of GFP. However, RFP appeared to be more stable as its fluorescence steadily increased during development. Finally, F1 transgenic offspring were obtained expressing GFP in skin cells under the CK promoter and RFP in muscle cells under the MLC promoter. Our study demonstrates the feasibility of monitoring expression of multiple genes in different tissues in the same transgenic organism.  相似文献   

16.
Agrobacterium rhizogenes mediated transformation combined with a visual selection for green fluorescent protein (GFP) has been applied effectively in carrot (Daucus carota L.) transformation. Carrot root discs were inoculated with A4, A4T, LBA1334 and LBA9402 strains, all bearing gfp gene in pBIN-m-gfp5-ER. The results indicate that transformed adventitious roots can be visually selected solely based on GFP fluorescence with a very high accuracy. The method requires no selection agents like antibiotics or herbicides and enables a reduction of labour and time necessary for tissue culture. Moreover, individual transformants can be easily excised from the host tissue and cultured separately. All of the 12 used carrot cultivars produced transformed adventitious roots and the frequency of discs producing GFP expressing adventitious roots varied from 13 to 85%. The highest transformation rate was found for A4T and LBA1334 strains possessing chromosomal background of A. tumefaciens C58. The results encourage that visual selection of transformed, fluorescing adventitious roots can be highly effective and applied routinely for the production of carrot transgenic plants.  相似文献   

17.
The suitability of the recently described red fluorescent protein dsRED from reef corals for use as a reporter in plant molecular biology was investigated. Based on the clone pDSRED (Clontech), plant expression vectors were constructed for constitutive dsRED expression in the cytosol, the endoplasmic reticulum and the vacuole. Fluorescence microscopy of tobacco BY2 suspension culture cells transiently expressing the plant vectors generated proved that cytosolic expression of the dsRED gives rise to readily detectable levels of red fluorescence, whereas expression in the ER was poor. Vacuolar dsRED expression did not result in any significant fluorescence. dsRED transgenic tobacco SR1 plants were generated to test the sensitivity of dsRED as a reporter in an autofluorescent background, and to identify the possible impact of the introduced fluorescent protein on morphogenesis, plant development and fertility. During the transformation and regeneration phase plants did not show any abnormalities, indicating that dsRED is not interfering with plant development and morphogenesis. Regenerated plants were analysed by PCR, Western blot and fluorescence microscopy for the presence and expression of the transferred genes. The filter sets chosen for fluorescence microscopy proved to be able to block the red chlorophyll fluorescence completely, allowing specific dsRED detection. Best expression levels were obtained with dsRED targeted to the cytosol or chloroplasts. ER-targeted expression of dsRED also gave rise to readily detectable fluorescence levels, whereas vacuolar expression yielded no fluorescence. dsRED transgenic plant lines expressing the protein in the cytosol, ER or chloroplast proved to be fertile. Seed set and germination were normal, except that the seeds and seedlings maintained the red fluorescence phenotype.  相似文献   

18.
Genetically altered or tagged Vibrio fischeri strains can be observed in association with their mutualistic host Euprymna scolopes, providing powerful experimental approaches for studying this symbiosis. Two limitations to such in situ analyses are the lack of suitably stable plasmids and the need for a fluorescent tag that can be used in tandem with green fluorescent protein (GFP). Vectors previously used in V. fischeri contain the p15A replication origin; however, we found that this replicon is not stable during growth in the host and is retained by fewer than 20% of symbionts within a day after infection. In contrast, derivatives of V. fischeri plasmid pES213 were retained by ~99% of symbionts even 3 days after infection. We therefore constructed pES213-derived shuttle vectors with a variety of selectable and visual markers. To include a visual tag that can be used in conjunction with GFP, we compared seven variants of the DsRed2 red fluorescent protein (RFP): mRFP1, tdimer2(12), DsRed.T3, DsRed.T4, DsRed.M1, DsRed.T3_S4T, and DsRed.T3(DNT). The last variant was brightest, displaying >20-fold more fluorescence than DsRed2 in V. fischeri. RFP expression did not detectably affect the fitness of V. fischeri, and cells were readily visualized in combination with GFP-expressing cells in mixed infections. Interestingly, even when inocula were dense enough that most E. scolopes hatchlings were infected by two strains, there was little mixing of the strains in the light organ crypts. We also used constitutive RFP in combination with the luxICDABEG promoter driving expression of GFP to visualize the spatial and temporal induction of this bioluminescence operon during symbiotic infection. Our results demonstrate the utility of pES213-based vectors and RFP for in situ experimental approaches in studies of the V. fischeri-E. scolopes symbiosis.  相似文献   

19.

Background  

Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation.  相似文献   

20.
The gene of a new red fluorescent protein zoan2RFP from coral polyp Zoanthus sp., a homologue of the known green fluorescent protein from the jellyfish Aequorea victoria, was cloned. At early stages of maturation, zoan2RFP exhibits green fluorescence, which then turns to the red one. A similar phenomenon was recently reported for the E5 mutant of the red fluorescent coral protein DsRed. Zoan2RFP differs from E5 by faster maturation kinetics and the complete disappearance of green fluorescence in the mature protein. Naturally occurring proteins of this type can be considered as intermediate forms between the green and red fluorescent proteins, which are formed during the microevolution of fluorescent proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号