首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the level of nicotinamide nucleotides, rate of 14CO2output from [1–14C] or [614 C6/C1 ratios, glucose-6-phosphatedehydrogenase, 6-phosphogluconate dehydrogenase, and NAD kinaseactivities were determined during the first 72 h of germinationof seeds of Cicer arietinum L. The level of oxidized and reducedforms of nicotinamide nucleotides, together with the activityof glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase,NAD kinase, and C6/C1 ratios, suggest that the pentose phosphatepathway is activated during early germination in cotyledonsof chick pea seeds. The results obtained in embryonic axes seemsto indicate a lower participation of the PP pathway, probablydue to the development of the activity of the glycolytic-TCApathway.  相似文献   

2.
The initial products of 14CO2 assimilation were determined understeady state illumination of leaves of Flaveria trinervia, aC4 dicot of the NADP-mialic enzyme subgroup. Leaf age influencedthe partitioning of 14CO2 between the C4 cycle and the reductivepentose phosphate (RPP) pathway. An estimated 10 to 12%of theCO2 entered the RPP pathway directly in leaves about 20% fullyexpanded, whereas CO2 was apparently fixed entirely throughthe C4 pathway in leaves 75% or more expanded. This partitioningpattern was attributed to the bundle sheath compartment in youngleaves having a relatively high conductance to CO2 (i.e., beingsomewhat leaky). Of the initially labelled C4 acids, the proportion that wasmalate, relative to aspartate, increased continuously duringleaf expansion (from 60 : 40 to 87 : 13 at full expansion).Concurrently, there was an increase in the whole leaf activityof NADP malate dehydrogenase and a decrease in the activitiesof aspartate and alanine aminotransferases. Low chlorophylla/b values were observed in young leaves, which may coincidewith an enhanced capacity for non-cyclic electron transportin the bundle sheath chloroplasts of such tissue. Both enhancedaspartate metabolism and direct fixation of CO2 in the bundlesheath could provide a greater sink for utilization of photochemicallyderived NADPH in the bundle sheath of young leaves. Such metabolicchanges are discussed in relation to a possible decrease inCO2 conductance of the bundle sheath during leaf development. (Received March 4, 1986; Accepted June 25, 1986)  相似文献   

3.
In Dunaliella tertiolecta, D. bioculata and D. viridis the activitiesof phosphoenolpyruvate carboxylase and carbonic anhydrase werehigher in the cells grown in ordinary air (low-CO2 cells) thanin those grown in air enriched with 1–5% CO2 (high-CO2cells), whereas in Porphyridium cruentum R-1 there was no differencein phosphoenolpyruvate carboxylase activity between these twotypes of cells. Apparent Km(NaHCO3) values for photosynthesisin low-CO2 cells of all species tested were smaller than thosein high-CO2 cells. Most of the 14C was incorporated into 3-phosphoglycerate,sugar mono- and di-phosphates during the initial periods ofphotosynthetic NaH14CO3 indicating that both types of cellsin D. tertiolecta are C3 plants. (Received May 27, 1985; Accepted June 25, 1985)  相似文献   

4.
D-Glucose-6-phosphate: NADP oxidoreductase (glucose-6-phosphatedehydrogenase; EC 1.1.1.49 [EC] ) and 6-phospho-D-gluconate: NADPoxidoreductase (6-phosphogluconate dehydrogenase; EC 1.1.1.44 [EC] )were found to be present in immature bamboo. Optimal pHs ofthe glucose-6-phosphate- and 6-phosphogluconate dehydrogenaseswere found to be 8.0 and 8.5, respectively. Both enzymes were demonstrated to be NADP-specific and NADPcould not be replaced by NAD. Fructose-6-phosphate was indirectlyutilized after convrsion to glucose-6-phosphate by glucose-6-phosphateisomerase coexisting in the enzyme preparation. Pattern of enzyme activity and of respiratory breakdown of glucose-1-14Cand glucose-6-14C were investigated in connection with lignificationof bamboo and discussed in comparison with sugar metabolismof fungi-infected plant tissues. As for the changes in the enzymeactivity with growth of bamboo, it was recognized that therewas a tendency that the activity of both enzymes increased andwas maintained at a certain level even in the aged tissues.In addition there was a drop of the C6/C1 ratio toward the tissuesof lower parts containing considerable amount of lignin andthis phenomenon was the same as that observed in pentose phosphatemetabolism of fungi-infected plant tissues. (Received September 5, 1966; )  相似文献   

5.
Excised leaves of a C3-photosynthetic type, Hordeum vulgare,a C4-type, Panicum miliaceum, and an intermediate-type, Panicummilioides, were allowed to take up through their cut ends a1 mM solution of butyl hydroxybutynoate (BHB), an irreversibleinactivator of glycolate oxidase. After 30 to 60 min in BHB,extractable glycolate oxidase activity could not be detectedin the distal quarter of the leaf blades. Following this pretreatment,recovery of 14C-glycolate from 14CO2 incorporated in a 10 minperiod was nearly maximal for each of the three plant types.Labeled glycolate was 51% of the total 14CO2 incorporated forthe C3-species, 36% for the intermediate-species, and 27% forthe C4-species Increased labeling of glycolate was compensatedfor primarily by decreased labeling of the neutral and basicfractions for the C3 and intermediate-type species. In the C4-type,label decreased primarily in the neutral and insoluble fractions,but increased in the basic fraction. A lower rate of glycolatesynthesis is indicative of a lower rate of photorespirationand consistent with a lower O2/CO2 ratio present in the bundle-sheathcells of C4-plants. We conclude that both decreased glycolatesynthesis and the refixation of photorespiratory-released CO2are important in maintaining a lower rate of photorespirationin C4-plants compared to C3 plants. Intermediate glycolate synthesisin Panicum milioldes is consistent with its intermediate levelof O2 inhibition of photosynthesis and intermediate rate ofphotorespiration. (Received May 6, 1978; )  相似文献   

6.
Carbon Dioxide Fixation by Barley Roots   总被引:1,自引:0,他引:1  
The non-volatile, 80 per cent.ethanol-soluble products of fixationhave been investigated in excised roots, using C14O2 and radiochromatography. The main radioactive compounds separated were malic, citric(or iso-citric), aspartic, and glutamic acids, asparagine andglutamine. Less activity was present in serine, tyrosine, -ketoglutaricacid, and alanine, and in a number of unidentified compounds. The uptake of C14O2 was inhibited by virtually anaerobic conditions. From the above observations it is considered likely that C14is transformed through the reactions of the tricarboxylic acidcycle. C14 in the soluble fraction was markedly increased by maintainingthe root material in water rather than in a nutrient solutionprior to exposure to C14O2 This increase was chiefly in malicacid.  相似文献   

7.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

8.
The 14C-metabolite distribution pattern following 14C2H4 metabolismin intact pea seedlings (Pisum sativum L.) was determined undervarious conditions. After a 24 hr exposure to 14C2H4, the majorityof 14C-metabolites were water-soluble (60–70%) with lesseramounts in the protein (10–15%), lipid (1%), and insoluble(1–2%) fractions. Ion exchange chromatography of the water-solublecomponents into basic, neutral, and acidic fractions revealeda 50 : 40 : 10 distribution, respectively. Chromatography ofthe neutral fraction revealed two regions of radioactivity (Rf=0.38)and 0.63 which did not cochromatograph with twenty-two knownsugars or neutral metabolites. Chromatograms of the basic fractioncontained 3 regions of radioactivity. Similar distribution patternswere noted when 14C2H4 exposure was followed by a 6 hr air chaseor when 5% CO2, an antagonist of ethylene action, was presentduring the exposure. Marked differences in the 14C-metabolite distribution patternswere obtained when 14CO2 was substituted for 14C2H4. These resultsindicate that the metabolic pathway involved in ethylene metabolismis different from that involved in intermediary carbon metabolism. 1 Contribution No. 2338 from Central Research and DevelopmentDepartment, Experimental Station, E. I. du Pont de Nemours andCompany, Wilmington, Delaware. (Received June 28, 1976; )  相似文献   

9.
Cyclopenin (C17H14O3N2) and cyclopenol (C17H14O4N2), isolatedfrom an abberent strain of Penicillium cyclopium (NRRL 6233),significantly inhibited the growth of etiolated wheat (Triticumaestivum) coleoptile segments. The former inhibited at 10–3and 10–4 M, the latter at 10–3 M. Cyclopenin producedmalformation of the first set of trifoliate leaves in bean (Phaseolusvulgaris) at 10–2 M and necrosis and stunting in corn(Zea mays) at 10–2 M. Cyclopenol induced no apparent effectsin bean or corn plants. Neither compound changed the growthor morphology of tobacco (Nicotiana tabacum) plants. Cyclopenininduced intoxication, prostration and ataxia in day-old chicksat 500 mg/kg, but they recovered within 18 hours. Cyclopenolwas inactive against chicks when dosed at levels up to 500 mg/kg. (Received October 11, 1983; Accepted December 15, 1983)  相似文献   

10.
When specifically labelled glucose was fed to strawberry leaves,the C6/C1, quotient (rate of release of 14CO2 from glucose-6-14C/rateof release of 14CO2 from glucose-114C ranged from 0.27 to 0.35in leaves in water and from 0.46 to 0.96 in leaves fed withiodoacetate. These quotients indicate that both the glycolyticand the pentose phosphate pathways participate in the respirationof strawberry leaves, with a greater contribution from the formerin the iodoacetate increased CO2 output. Concurrently with the increase of CO2 output in iodoacetate,the contents of glucose-6-phosphate (G6P), fructose-6 (F6P)and fructose-1,6-diphosphate (FDP) increased greatly; therewas a smaller increase of phosphoenol-pyruvate (PEP). The increasein the CO2 output in iodoacetate may be explained solely onthe basis that the increases of G6P and FDP accelerate the ratesrespectively of the pentose phosphate pathway and of glycolysisand traffic into the tricarboxylic acid cycle. The increasein content of G6P and FDP is attributed to an increase in theaccessibility of enzymes and substrates caused by iodoacetate.Alternatively the increased CO2 output in iodoacetate may bepartly due to uncoupling of oxidative phosphorylation.  相似文献   

11.
Mächler, F., Lehnherr, B., Schnyder, H. and Nösberger,J. 1985. A CO2 concentrating system in leaves of higher C3-plantspredicted by a model based on RuBP carboxylase/oxygenase kineticsand 14CO2/12CO2 exchange.–J. exp. Bot. 36: 1542–1550. A model is presented which compares the ratio of the two activitiesof the enzyme nbulose bisphosphate carboxylase/oxygenase asdetermined in vitro with the ratio of photosynthesis to photorespirationin leaves as determined from differential 14CO2/12CO2 uptakeor from CO2 compensation concentration. Discrepancies betweenmeasurements made in vitro and in vivo are attributed to theeffect of a CO2 concentrating system in the leaf cells. Interferencefrom dark respiration is discussed. A CO2 concentrating systemis postulated which is efficient mainly at low temperature andlow CO2 concentration. Key words: —Photosynthesis, photorespiration, ribulose bisphosphate carboxylase/oxygenase  相似文献   

12.
In Daucus carota cells cultivated in vitro, the ammonium ionstimulates the incorporation of radioactivity from labelledglucose and labelled pyruvate into CO2 and into the residueinsoluble in 60 per cent (v/v) ethanol. There is a higher 14CO2production from [6-14C2] glucose than from [6-14C] glucose.These results suggest a possible stimulation of glycolysis bythe ammonium ion.  相似文献   

13.
Light and electron microscopic observations of the leaf tissueof Panicum milioides showed that the bundle sheath cells containeda substantial number of chloroplasts and other organelles. Theradial arrangement of chlorenchymatous bundle sheath cells,designated as Kranz leaf anatomy, has been considered to bespecific to C4 plants. However, photosynthetic 14CO2 fixationand 14CO2 pulse-and-chase experiments revealed that the reductivepentosephosphate pathway was the main route operating in leavesof P. milioides. The interveinal distance of the leaves wasintermediate between C3and C4Gramineae species. These resultsindicate that P. milioides is a natural plant species havingchracteristics intermediate between C3 and C4 types. (Received March 6, 1975; )  相似文献   

14.
Attached leaves of sunflower (Helianthus annuus L. var. Mennonite)with water potentials of –5 to –18 ? 105 Pa, wereexposed for different times to 300 vpm CO2 containing 14CO2and 21 or 1.5% O2. 14C accumulated linearly with time in bothO2 concentrations and at all stresses. 3-Phosphoglyceric acidwas saturated with 14C after 10 min in unstressed plants atboth O2 concentrations but with increasing stress the rate ofaccumulation and the specific activity decreased. With decreasingleaf water potential there was accumulation of radioactivityin the glycolate pathway intermediates glycine and serine. Otheramino acids contained a slightly larger proportion of assimilatedcarbon as water potential decreased. The specific activitiesof all compounds were smaller with stress. In contrast to theamino acids less radioactivity accumulated in sugars, organicacids, and sugar phosphates and their specific activities decreasedwith stress. The radioactive labelling patterns and specificactivity measurements are interpreted as showing increased carbonflux in the glycolate pathway and inhibition of the metabolismof serine to sucrose. These changes are related to previousresults showing that with stress photo respiration increasesas a proportion of photosynthesis. Lowering the O2 concentrationto 1.5% decreased the accumulation of radioactivity in glycineand stopped photorespiration. It increased the amount of radioactivityin serine and sucrose but did not greatly change specific activities.Oxygen effects were independent of water stress. Glycolate pathwaymetabolism is discussed in relation to photorespiration andthe effects of water stress.  相似文献   

15.
Effects of respiratory substrates (glucose, malate, citrateand pyruvate) and inhibitors (fluoride, iodoacetate, azide andDNP) on the O2-uptake rhythm in a long-day duckweed,Lemna gibbaG3 in continuous light period were examined. Rates of O2-uptake at the starting point (6 hr after the beginningof a continuous light period) and at the time of the first peakof the rhythm (18 hr after the beginning of a continuous lightperiod) were equally increased by exogenous substrates. Sensitivityof respiration to fluoride or iodoacetate was almost the sameat the 6th and 18th hr. The O2-uptake (at the 6th, 18th, 30thand 42nd hr) was increased by DNP by the same amount. Azideat lower concentrations than 5X10–4 M did not affect O2-uptakeat the 6th hr, but inhibited uptake at the 18th hr. In the presenceof 5 X 10–4 M of azide the rates of O2-uptake at the 18th,30th or 42nd hr were down to the rate at the 6th hr, which wasinsensitive to azide. These results suggest that the O2-uptakerhythm consists of two components, i.e. the basic respirationwhich is promoted by exogenous substrate, sensitive to DNP andinsensitive to azide; and rhythmic respiration, which is sensitiveto azide, but is not influenced by exogenous substrate and DNP. (Received February 19, 1971; )  相似文献   

16.
Photosynthetic carbon metabolism was studied with Chroomonassp. cells in which the rate of photosynthesis was inhibitedunder both an anaerobic condition and high concentrations ofoxygen. The time course of 14C-incorporation into photosyntheticproducts showed that 3-phosphoglycerate was the initial productof photosynthetic CO2 fixation in Chroomonas sp. cells. During5-min photosynthesis, a considerable amount of 14C was incorporatedinto the insoluble fraction (mostly cryptomonad starch), andoxygen predominantly affected 14C-incorporation into this fraction.Although 14C-incorporation into intermediates of the photorespiratorypathway increased with increasing O2 concentration, the amountswere much less than expected from the degree of oxygen inhibition.It is noteworthy that 14C-dihydroxyacetone phosphate accumulatedduring photosynthesis only under the anaerobic condition, whereasthe levels of the other phosphate esters were scarcely affectedby the oxygen concentration. Ribulose-1,5-bisphosphate carboxylase from Chroomonas sp. wascompetitively inhibited by oxygen, and its Km(CO2) value wassimilar to those of terrestrial C3 plant enzymes. (Received November 19, 1984; Accepted May 20, 1985)  相似文献   

17.
The capacity for C4 photosynthesis in Panicum milioides, a specieshaving reduced levels of photorespiration, was investigatedby examining the activity of certain key enzymes of the C4 pathwayand by pulse-chase experiments with 14CO2. The ATP$P1 dependentactivity of pyruvate,P1 dikinase in the species was extremelylow (0.14–0.18 µmol mg chlorophyll–1 min–1).Low activity of the enzyme was also found in Panicum decipiensand Panicum hians (related species with reduced photorespiration)and in Panicum laxum (a C3 species). The antibody to pyruvate,P1dikinase caused about 70% inhibition of the ATP$P1 dependentactivity of the enzyme in P. milioides. The activity of NAD-malicenzyme and NADP-malic enzyme in P. milioides was equally low(approximately 0.1–0.2 µmol mg chlorophyll–1min–1) and similar to the activity in P. decipiens, P.hians and P. laxum. Photosynthetic pulse-chase experiments underatmospheric conditions showed a typical C3-like pattern of carbonassimilation including the labelling of glycine and serine asexpected during photorespiration. During the pulse with 14CO2only about 1% of the labelled products appeared in malate and2–3% in aspartate. During a chase in atmospheric levelsof CO2 for up to 6 min there was a slight increase in labellingin the C4 acids. The amount of label in carbon 4 of aspartatedid not change during the chase, indicating little or no turnoverof the C4 acid via decarboxylation. The results indicate thatunder atmospheric conditions P. milioides assimilates carbondirectly through the C3 pathway. Photorespiration as indicatedby the CO2 compensation point may be repressed in the speciesby a more efficient recycling of photorespired CO2. (Received June 8, 1982; Accepted July 22, 1982)  相似文献   

18.
Radioactive starch, glucose and fructose have been preparedfrom tobacco leaves after assimilation of C14O2. The apparatusused for photosynthesis consisted of a shallow Perspex leafchamber connected to a closed gas system, in which C14O2 wasgenerated from BaC14O2. Six leaves, area 14 to 18 sq. dm. whenexposed to bright sunlight with an initial CO2 concentrationof 8 to 10 per cent., assimilated 3.35 g. of C14O2 in 8 to 10hours. At least 80 per cent. of the C14O2 supplied appearedin the leaves as starch and sugar and over 80 per cent. of theradioactivity was accounted for in these carbohydrates. Thespecific activity per m. atom of carbon of the isolated productswas 85 to 90 per cent. of that of the C14O2. Small amounts ofradioactive carbon were also incorporated in the leaf proteinand in the celluose, hemicellulose and polyuronides.  相似文献   

19.
Yellow prisms of asparagusic acid, with a molecular formulaof C4H6O2S2 were isolated from etiolated asparagus tissues (Asparagusofficinalis L.). This acid inhibits growth in lettuce and otherseedlings when applied in concentrations of 6.67x10–7Mto 6.67xl0–7M. The extent of activity was very similarto that of abscisic acid. 1 A well known shift reagent in the NMR spectrum (1). (Received April 12, 1972; )  相似文献   

20.
Chlorophyll a and carotenoids of spinach began to be destroyed2 to 3 hr after fumigation with 2 ppm SO2 under light, whereaschlorophyll b was undamaged during 8 hr of exposure to SO2.Pheophytin a was not affected by the fumigation. When disks excised from leaves fumigated with SO2 at 2 ppm for2 hr were illuminated, chlorophyll a and carotenoids were brokendown, while they were not destroyed in darkness. The destructionof these pigments was suppressed under nitrogen. Chlorophylla destruction was inhibited by l,2-dihydroxybenzene-3,5-disulfonate(tiron), hydro-quinone and ascorbate, but not by l,4-diazabicyclo-[2,2,2]-octane(DABCO), methio-nine, histidine, benzoate and formate. Chlorophylla destruction was inhibited by phenazine methosulfate but stimulatedby methyl viologen. Addition of superoxide dismutase (SOD) tothe homogenate of SO2-fumigated leaves inhibited the chlorophylla destruction. The activity of endogenous SOD was reduced to40% by 2-hr fumigation before the loss of chlorophyll was observed.These results suggest that chlorophyll a destruction by SO2was due to superoxide radicals (O2). Moreover, malondialdehyde (MDA), a product of lipid peroxidation,was formed in SO2-fumigated leaves. MDA formation was inhibitedby tiron, hydroquinone and DABCO but not by benzoate and formate.MDA formation was increased by D2O. These results suggest thatlipid peroxidation in SO2-fumigated leaves was due to singletoxygen 1O2 produced from O2. (Received May 15, 1980; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号