首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li ZK  Luo LJ  Mei HW  Wang DL  Shu QY  Tabien R  Zhong DB  Ying CS  Stansel JW  Khush GS  Paterson AH 《Genetics》2001,158(4):1737-1753
To understand the genetic basis of inbreeding depression and heterosis in rice, main-effect and epistatic QTL associated with inbreeding depression and heterosis for grain yield and biomass in five related rice mapping populations were investigated using a complete RFLP linkage map of 182 markers, replicated phenotyping experiments, and the mixed model approach. The mapping populations included 254 F(10) recombinant inbred lines derived from a cross between Lemont (japonica) and Teqing (indica) and two BC and two testcross hybrid populations derived from crosses between the RILs and their parents plus two testers (Zhong 413 and IR64). For both BY and GY, there was significant inbreeding depression detected in the RI population and a high level of heterosis in each of the BC and testcross hybrid populations. The mean performance of the BC or testcross hybrids was largely determined by their heterosis measurements. The hybrid breakdown (part of inbreeding depression) values of individual RILs were negatively associated with the heterosis measurements of their BC or testcross hybrids, indicating the partial genetic overlap of genes causing hybrid breakdown and heterosis in rice. A large number of epistatic QTL pairs and a few main-effect QTL were identified, which were responsible for >65% of the phenotypic variation of BY and GY in each of the populations with the former explaining a much greater portion of the variation. Two conclusions concerning the loci associated with inbreeding depression and heterosis in rice were reached from our results. First, most QTL associated with inbreeding depression and heterosis in rice appeared to be involved in epistasis. Second, most ( approximately 90%) QTL contributing to heterosis appeared to be overdominant. These observations tend to implicate epistasis and overdominance, rather than dominance, as the major genetic basis of heterosis in rice. The implications of our results in rice evolution and improvement are discussed.  相似文献   

2.
Luo X  Fu Y  Zhang P  Wu S  Tian F  Liu J  Zhu Z  Yang J  Sun C 《植物学报(英文版)》2009,51(4):393-408
A set of 148 F9 recombinant inbred lines (RILs) was developed from the cross of an indica cultivar 93-11 and japonica cultivar DTT13,showing strong F1 heterosis.Subsequently,two backcross F1 (BCF1) populations were constructed by backcrossing these 148 RILs to two parents,93-11 and DT713.These three related populations (281BCF1 lines,148 RILs) were phenotyped for six yield-related traits in two locations.Significant inbreeding depression was detected in the population of RILS and a high level of heterosis was observed in the two BCF1 populations.A total of 42 main-effect quantitative trait loci (M-QTLs) and 109 epistatic effect QTL pairs (E-QTLs) were detected in the three related populations using the mixed model approach.By comparing the genetic effects of these QTLs detected in the RILs,BCF1 performance and mid-parental heterosis (HMp),we found that,in both BCF1 populations,the QTLs detected could be classified into two predominant types:additive and over-domlnant loci,which indicated that the additive and over-dominant effect were more important than complete or partially dominance for M-QTLs and E-QTLs.Further,we found that the E-QTLs detected collectively explained a larger portion of the total phenotypic variation than the M-QTLs in both RILs and BCF1 populations.All of these results suggest that additive and over-dominance resulting from epistatic loci might be the primary genetic basis of heterosis in rice.  相似文献   

3.
Garcia AA  Wang S  Melchinger AE  Zeng ZB 《Genetics》2008,180(3):1707-1724
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that has been used for estimating the average degree of dominance of quantitative trait loci (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selfing. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive × additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.  相似文献   

4.
Inferring the genetic basis of inbreeding depression in plants.   总被引:1,自引:0,他引:1  
K Ritland 《Génome》1996,39(1):1-8
Recent progress in the genetic analysis of inbreeding depression in plants is reviewed. While the debate over the importance of genes of dominance versus overdominance effect continues, the scope of inferences has widened and now includes such facets as the interactions between genes, the relative abundance of major versus minor genes, life cycle stage expression, and mutation rates. The types of inferences are classified into the genomic, where many genes are characterized as an average, and the genic, where individual genes are characterized. Genomic inferences can be based upon natural levels of inbreeding depression, purging experiments, the comparison of individuals of differing F (e.g., prior inbreeding), and various crossing designs. Genic inferences mainly involve mapping and characterizing loci with genetic markers, involving either a single cross or, ideally, several crosses. Alternative statistical models for analyzing polymorphic loci causing inbreeding depression should be a fruitful problem for geneticists to pursue. Key words : inbreeding depression, genetic load, self-fertilization, QTL mapping.  相似文献   

5.
Importance of over-dominance as the genetic basis of heterosis in rice   总被引:3,自引:0,他引:3  
In populations derived from commercial hybrid rice combination Shanyou 10, F1 hetero-sis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozy-gotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

6.
In populations derived from commercial hybrid rice combination Shanyou 10, F1 heterosis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozygotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

7.
Predictions for the evolution of mating systems and genetic load vary, depending on the genetic basis of inbreeding depression (dominance versus overdominance, epistasis and the relative frequencies of genes of large and small effect). A distinction between the dominance and overdominance hypotheses is that deleterious recessive mutations should be purged in inbreeding populations. Comparative studies of populations differing in their level of inbreeding and experimental approaches that allow selection among inbred lines support this prediction. More direct biometric approaches provide strong support for the importance of partly recessive deleterious alleles. Investigators using molecular markers to study quantitative trait loci (QTL) often find support for overdominance, though pseudo-overdominance (deleterious alleles linked in repulsion) may bias this perception. QTL and biometric studies of inbred lines often find evidence for epistasis, which may also contribute to the perception of overdominance, though this may be because of the divergent lines initially crossed in QTL studies. Studies of marker segregation distortion commonly uncover genes of major effect on viability, but these have only minor contributions to inbreeding depression. Although considerable progress has been made in understanding the genetic basis of inbreeding depression, we feel that all three aspects merit more study in natural plant populations.  相似文献   

8.
Epistasis plays an important role as genetic basis of heterosis in rice   总被引:6,自引:0,他引:6  
Thegeneticbasisofheterosisisstilladebatingissue.Twohypotheses,thedominancehypothesisandtheoverdominancehypothesis,bothproposedin1908[1—3],havecompetedformostpartofthiscentury.Althoughmanyresearcherspreferonehypothesistotheother,experimentaldataallowingforcr…  相似文献   

9.
The degree to which, and rapidity with which, inbreeding depression can be purged from a population has important implications for conservation biology, captive breeding practices, and invasive species biology. The degree and rate of purging also informs us regarding the genetic mechanisms underlying inbreeding depression. We examine the evolution of mean survival and inbreeding depression in survival following serial inbreeding in a seed-feeding beetle, Stator limbatus, which shows substantial inbreeding depression at all stages of development. We created two replicate serially inbred populations perpetuated by full-sib matings and paired with outbred controls. The genetic load for the probability that an egg produces an adult was purged at approximately 0.45-0.50 lethal equivalents/generation, a reduction of more than half after only three generations of sib-mating. After serial inbreeding we outcrossed all beetles then measured (1) larval survival of outcrossed beetles and (2) inbreeding depression. Survival of outcrossed beetles evolved to be higher in the serially inbred populations for all periods of development. Inbreeding depression and the genetic load were significantly lower in the serially inbred than control populations. Inbreeding depression affecting larval survival of S. limbatus is largely due to recessive deleterious alleles of large effect that can be rapidly purged from a population by serial sib-mating. However, the effectiveness of purging varied among the periods of egg/larval survival and likely varies among other unstudied fitness components. This study presents novel results showing rapid and extensive purging of the genetic load, specifically a reduction of as much as 72% in only three generations of sib-mating. However, the high rate of extinction of inbred lines, despite the lines being reared in a benign laboratory environment, indicates that intentional purging of the genetic load of captive endangered species will not be practical due to high rates of subpopulation extinction.  相似文献   

10.
Main effects, epistatic effects and their environmental interactions of QTLs are all important genetic components of quantitative traits. In this study, we analyzed the main effects, epistatic effects of the QTLs, and QTL by environment interactions (QEs) underlying four yield traits, using a population of 240 recombinant inbred lines from a cross between two rice varieties tested in replicated field trials. A genetic linkage map with 220 DNA marker loci was constructed. A mixed linear model approach was used to detect QTLs with main effects, QTLs involved in digenic interactions and QEs. In total, 29 QTLs of main effects, and 35 digenic interactions involving 58 loci were detected for the four traits. Thirteen QTLs with main effects showed QEs; no QE was detected for the QTLs involved in epistatic interactions. The amount of variations explained by the QTLs of main effect were larger than the QTLs involved in epistatic interactions, which in turn were larger than QEs for all four traits. This study illustrates the ability of the analysis to assess the genetic components underlying the quantitative traits, and demonstrates the relative importance of the various components as the genetic basis of yield traits in this population.  相似文献   

11.
12.
Determining the genetic basis of inbreeding depression is important for understanding the role of selection in the evolution of mixed breeding systems. Here, we investigate how androdioecy (a breeding system characterized by partial selfing and outcrossing) and dioecy (characterized by obligatory outcrossing) influence the experimental evolution of inbreeding depression in Caenorhabditis elegans. We derived inbred lines from ancestral and evolved populations and found that the dioecious lineages underwent more extinction than androdioecious lineages. For both breeding systems, however, there was selection during inbreeding because the diversity patterns of 337 single-nucleotide polymorphisms (SNPs) among surviving inbred lines deviated from neutral expectations. In parallel, we also followed the evolution of embryo to adult viability, which revealed similar starting levels of inbreeding depression in both breeding systems, but also outbreeding depression. Under androdioecy, diversity at a neutral subset of 134 SNPs correlated well with the viability trajectories, showing that the population genetic structure imposed by partial selfing affected the opportunity for different forms of selection. Our findings suggest that the interplay between the disruptions of coevolved sets of loci by outcrossing, the efficient purging of deleterious recessive alleles with selfing and overdominant selection with outcrossing can help explain mixed breeding systems.  相似文献   

13.
Moorad JA  Wade MJ 《Genetics》2005,170(3):1373-1384
Inbreeding depression is expected to play an important but complicated role in evolution. If we are to understand the evolution of inbreeding depression (i.e., purging), we need quantitative genetic interpretations of its variation. We introduce an experimental design in which sires are mated to multiple dams, some of which are unrelated to the sire but others are genetically related owing to an arbitrary number of prior generations of selfing or sib-mating. In this way we introduce the concept of "inbreeding depression effect variance," a parameter more relevant to selection and the purging of inbreeding depression than previous measures. We develop an approach for interpreting the genetic basis of the variation in inbreeding depression by: (1) predicting the variation in inbreeding depression given arbitrary initial genetic variance and (2) estimating genetic variance components given half-sib covariances estimated by our experimental design. As quantitative predictions of selection depend upon understanding genetic variation, our approach reveals the important difference between how inbreeding depression is measured experimentally and how it is viewed by selection.  相似文献   

14.
We describe the evolutionary dynamics of a modifier of selfing coevolving with a locus subject to symmetric overdominance in viability under general levels of reduction in pollination success as a consequence of self-fertilization (pollen discounting). Simple models of the evolution of breeding systems that represent inbreeding depression as a constant parameter do not admit the possibility of stable mixed mating systems involving both inbreeding and random mating. Contrary to this expectation, we find that coevolution between a modifier of selfing and a single overdominant locus situated anywhere in the genome can generate evolutionarily attracting mixed mating systems. Two forms of association between the modifier locus and the viability locus promote the evolution of outcrossing. The favored heterozygous genotype at the viability locus develops positive associations with modifier alleles that enhance outcrossing and with the heterozygous genotype at the modifier locus. Associations between outcrossing and high viability evolve immediately upon the introduction of a rare modifier allele, even in the absence of linkage.  相似文献   

15.
Escobar JS  Nicot A  David P 《Genetics》2008,180(3):1593-1608
Understanding how parental distance affects offspring fitness, i.e., the effects of inbreeding and outbreeding in natural populations, is a major goal in evolutionary biology. While inbreeding is often associated with fitness reduction (inbreeding depression), interpopulation outcrossing may have either positive (heterosis) or negative (outbreeding depression) effects. Within a metapopulation, all phenomena may occur with various intensities depending on the focal population (especially its effective size) and the trait studied. However, little is known about interpopulation variation at this scale. We here examine variation in inbreeding depression, heterosis, and outbreeding depression on life-history traits across a full-life cycle, within a metapopulation of the hermaphroditic snail Physa acuta. We show that all three phenomena can co-occur at this scale, although they are not always expressed on the same traits. A large variation in inbreeding depression, heterosis, and outbreeding depression is observed among local populations. We provide evidence that, as expected from theory, small and isolated populations enjoy higher heterosis upon outcrossing than do large, open populations. These results emphasize the need for an integrated theory accounting for the effects of both deleterious mutations and genetic incompatibilities within metapopulations and to take into account the variability of the focal population to understand the genetic consequences of inbreeding and outbreeding at this scale.  相似文献   

16.
Simple theories for the evolution of breeding systems suggest that the fate of an allele that modifies the rate of self-fertilization hinges only on the degree to which selfing reduces opportunities for outcrossing ("pollen discounting") and the extent of inbreeding depression. These theories predict that outcrossing evolves whenever deleterious mutations have a more severe effect in combination than expected from their individual effects. We study the evolutionary dynamics of a modifier of the rate of self-fertilization in populations subject to complete pollen discounting and recurrent mutations which impair viability at a single locus in diploids and at two loci in haploids. Our analysis indicates that genetic associations arising immediately upon the introduction of a rare modifier allele generate substantial quantitative and qualitative departures from expectation. Higher rates of segregation under selfing in our one-locus diploid model generate positive associations between enhancers of selfing and wild-type viability alleles, which in turn favor the evolution of selfing under a wider range of conditions than expected. Greater opportunities for recombination under outcrossing in our two-locus haploid model generate positive associations between enhancers of outcrossing and wild-type viability alleles. These associations favor the evolution of outcrossing under a wider range of conditions, and introduce the possibility of stable mixed mating systems involving both selfing and outcrossing. Our explicit analysis of genetic associations between loci affecting viability and the rate of self-fertilization indicates that modifiers that enhance the production of offspring with very high (and very low) viability by promoting segregation or recombination develop positive associations with high viability. This advantage of producing extremes can compensate for an initial disadvantage in offspring number.  相似文献   

17.
We study the evolution of the rate of self-fertilization in response to deleterious mutations at multiple loci. Although partial selfing induces associations among loci even in the absence of linkage, associations among mutations at different loci are of a smaller order of magnitude than the mutation rate. Genotypes that carry homozygous lethal mutations in heterozygous form at i loci occur in frequencies of the order (Ti) mu i, in which T denotes the number of viability loci and mu the mutation rate. While associations between mutations at different loci remain small even under inbreeding, each viability locus develops an association with the modifier of the rate of self-fertilization that substantially affects the evolution of the breeding system. Positive associations between enhancers of selfing and haplotypes carrying multiple wild-type alleles and positive associations in heterozygosity between the modifier locus and the viability loci promote evolutionary increases in the rate of self-fertilization.  相似文献   

18.
Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.  相似文献   

19.
A population of 294 recombinant inbred lines (RIL) derived from Yuyu22, an elite maize hybrid extending broadly in China, has been constructed to investigate the genetic basis of grain yield, and associated yield components in maize. The main-effect quantitative trait loci (QTL), digenic epistatic interactions, and their interactions with the environment for grain yield and its three components were identified by using the mixed linear model approach. Thirty-two main-effect QTL and forty-four pairs of digenic epistatic interactions were detected for the four measured traits in four environments. Our results suggest that both additive effects and epistasis (additive × additive) effects are important genetic bases of grain yield and its components in the RIL population. Only 30.4% of main-effect QTL for ear length were involved in epistatic interactions. This implies that many loci in epistatic interactions may not have significant effects for traits alone but may affect trait expression by epistatic interaction with the other loci.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号