首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Fixed chromosomes of human lymphocytes, cultured in the presence of bromodeoxyuridine (BrdU) during two cell cycles, were exposed to near-ultraviolet irradiation, stained with Giemsa, and after destaining, were subjected to either Coomassie Blue or Feulgen-Schiff staining. A differential reaction of sister chromatids was first revealed by Coomassie Blue staining. Differential staining with Giemsa required a longer irradiation time. This appeared to be reduced after the addition of dithiodipyridine to the cells during their last few hours of culture. The differential pattern obtained after Coomassie Blue staining was the inverse of that obtained after Giemsa staining. From these findings we concluded that the induction of sister chromatid differentiation by light in BrdU-substituted DNA containing chromosomes occurs primarily via chromosomal proteins, presumably by differential breakage of their disulphide bonds. The results of the Feulgen-Schiff staining indicated that differential depurination of BrdU-containing DNA could occur, although only after very prolonged irradiation. A faint though distinctly differential Feulgen-Schiff pattern of sister chromated staining, resulting from differential removal of DNA, was observed after photosensitization by specific DNA-binding dyes. Thus, DNA seems to be affected only under more extreme conditions.  相似文献   

2.
The fluorescence of human lymphocyte chromosomes stained with sulfhydryl group-specific fluorochromes is markedly enhanced by a mild near-ultraviolet irradiation pretreatment, indicating breakage of protein disulfide bonds. When metaphase preparations of cells cultured in the presence of BrdU during two cell cycles are irradiated and subsequently stained with the sulfhydryl group-specific fluorescent reagents used in this study, a differential fluorescence of sister chromatids is observed. After staining with the DNA-specific fluorochrome DAPI an opposite pattern of lateral differentiation appears. It can be concluded that the chromatid containing bifilarly BrdU-substituted DNA has a higher content of sulfhydryl groups than the chromatid containing unifilarly BrdU-substituted DNA. This implies a more pronounced effect of breakage of disulfide bonds in the chromatid with the higher degree of BrdU-substitution. BrdU-containing chromosomes pretreated with the mild near-ultraviolet irradiation procedure used by us, do not show any differentiation of sister chromatids after Feulgen staining. Using sulfhydryl group-specific reagents, differential fluorescence of sister chromatids could still be induced by irradiation with near-ultraviolet light after the complete removal of DNA from the chromosomes by incubation with DNase I. Thus, the protein effect of irradiation of BrdU-containing chromosomes takes place independently of what occurs to DNA.Our results indicate that subsequent to the primary alteration of chromatin structure caused by the incorporation of BrdU into DNA, breakage of disulfide bonds of chromosomal proteins might play an important role in bringing about differential staining of sister chromatids, at least for those procedures that use irradiation as a pretreatment or prolonged illumination during microscopic examination.  相似文献   

3.
N. Kanda 《Chromosoma》1981,84(2):257-263
Selective differential staining of sister chromatids for the facultative heterochromatic X chromosome in the female mouse has been achieved by the combination of two differential staining techniques; one for the heterochromatic X chromosome and the other for sister chromatids. Thermal hypotonic treatment moderately destroyed the chromosome structure except for the heterochromatic X in BrdU labelled metaphase cells, resulting in the selective sister chromatid differentiation of this X with Giemsa stain. This technique enables us to know the exact frequency of the spontaneous sister chromatid exchanges in the heterochromatic X without using 3H-TdR labelling for detecting the late DNA replication. The results indicate that the sister chromatid exchange frequency of the heterochromatic X chromosome is not affected by its late DNA replication during S phase, or by the genetic inactivation and the resulting heterochromatinization.  相似文献   

4.
Chromosomes of human blood cells exposed to BUdR for two cell cycles showed an R-band pattern of fluorescence without lateral differentiation after staining with the GC-specific DNA-fluorochrome mithramycin. Differential sister chromatid fluorescence could be induced by a mild near-ultraviolet irradiation pretreatment which was without effect in Feulgen staining. Thus, besides the primary alteration of DNA structure caused by incorporation of BUdR, secondary structural alterations, probably mediated via chromosomal proteins, are required in order to obtain differential mithramycin-fluorescence of sister chromatids. The differential staining pattern was similar to that achieved with the AT-specific DNA-fluorochrome DAPI. Therefore, it may be concluded that the base specificity of fluorochromes does not play any part in the production of differential fluorescence of sister chromatids by this method.  相似文献   

5.
BrdU-substituted Chinese hamster chromosomes were treated with a hot Na2HPO4 solution and stained with Giemsa to produce sister chromatid differential staining (SCD). The process of SCD was examined with the Nomarski differential interference microscope and the scanning electron microscope. After the Na2HPO4 treatment alone, unifilarly BrdU-substituted (TB) chromatids appeared somewhat more severely collapsed than the bifilarly substituted (BB) chromatids. Subsequent Giemsa staining, however, brought about pronounced piling up of the Giemsa dye on the TB-chromatids but not on the BB-ones, causing highly distinct differential Giemsa staining as well as a marked differentiation in surface topography between the sister chromatids. Removal of the Giemsa dye from the differentially Giemsa stained chromosomes resulted in a disappearance of such a pronounced topographic differentiation.  相似文献   

6.
T. Haaf  G. Ott  M. Schmid 《Chromosoma》1986,94(5):389-394
The deoxycytidine analogue 5-azadeoxycytidine (5-aza-dC) induces differential inhibition of sister chromatid condensation when cells are treated with this substance for two replication cycles, as the subsequent staining of metaphase chromosomes with Giemsa shows. The bifilarly substituted chromatid is dramatically longer than the unifilar one. A percentage of the metaphases treated with 5-azad-C even show a complete undercondensation of the bifilarly substituted chromatid. The optimum conditions for inducing sister chromatid differentiation were determined. No method has been developed as yet to permit enhancement of the differential staining in 5-aza-dC-treated preparations. The interactions between 5-aza-dC and chromosomal DNA as well as the factors involved in the differential staining of sister chromatids are discussed.  相似文献   

7.
Chinese hamster strain cells were cultured in the presence of BUdR and air-dried on slides. The chromosome preparations were incubated in 1 M NaH2PO4 at 88 °C for 4–6 min and stained with Giemsa. The reverse type of sister chromatid differential staining occurred, in which unifilarly BUdR-substituted chromatids stained faintly and bifilarly substituted chromatids stained darkly. Feulgen reaction performed on the same chromosomes after removing Giemsa stain showed the same type of differential staining.  相似文献   

8.
Summary After substitution with 5-bromodeoxyuridine (BrdUrd) for two rounds of replication, chromosomes in cytological preparations stained with 33258 Hoechst show upon epiluminescence an immediate differential sister chromatid fluorescence. When stained with DAPI, however, which has a structural resemblance to part of the 33258 Hoechst molecule, such a differential pattern of fluorescence was only induced after some delay. Upon restaining with the same dye the differential fluorescence appeared instantly. In preparations double stained with ethidium bromide and 33258 Hoechst the induction of a differential staining of sister chromatids with 33258 Hoechst was not accompanied by a differential staining with ethidium bromide. Once a differential staining was obtained with DAPI in preparations double stained with ethidium bromide and DAPI, the ethidium bromide pattern also appeared to be differential upon subsequent observation. No differentiation could be obtained with ethidium bromide alone. The observations described in the case of 33258 Hoechst staining are in agreement with a molecular quenching by BrdUrd without gross structural consequences for the DNA. In the case of DAPI staining, however, there occurs a differential photolysis of BrdUrd-substituted DNA. Besides the nature, most likely the size, of the fluorochrome molecules themselves, the state of the fixed chromatin appeared also to play a role in determining the mechanism of the sister chromatid differentiation: after prolonged incubation in buffer, BrdUrd-containing chromosomes stained with 33258 Hoechst showed a differential staining evidently caused by photolysis, indicating that they had become more susceptible to light.  相似文献   

9.
A sister chromatid differential staining pattern is observed if chromosomes replicate for two cycles in the presence of 5-bromodeoxyuridine (BUdR) and are subsequently stained in Hoechst 33258, irradiated with black light, and then stained in Coomassie Brilliant Blue R-250. In this pattern the chromatids containing DNA that is bifilarly substituted with BrdUrd are darkly stained and the chromatids with DNA that is unifilarly substituted are lightly stained. This staining pattern is the reverse of that found when slides are stained in Hoechst plus Giemsa. Slides stained with either Giemsa or Coomassie Blue can be destained and restained repeatedly with the other stain to alternate the pattern observed.  相似文献   

10.
When fixed metaphase chromosomes of human lymphocytes grown in the presence of BrdUr for two cell cycles were stained with amino group-specific 2-methoxy-2,4-diphenyl-3(2H)furanone (MDPF) after a previous extraction of DNA, sister chromatids showed a light-independent differential staining. Although more faintly differential, a similar staining pattern being just the reverse of the DNA-specific DAPI pattern was obtained without prior removal of DNA. We conclude that the chromatid containing bifilarly BrdUr-substituted DNA has a higher protein content, at least after fixation, than the chromatid containing unifilarly BrdUr-substituted DNA. Possibly, a higher degree of BrdUr substitution leads to a tighter binding of chromosomal proteins. In line with this suggestion we found a markable difference in DNA extractability of BrdUr-containing and normal cytological preparations.  相似文献   

11.
Factors involved in differential giemsa-staining of sister chromatids   总被引:4,自引:0,他引:4  
Microspectrophotometric evaluation of differentially stained sister chromatids made it possible to analyse precisely the factors involved in the Giemsa methods. The concentration of Hoechst 33258, pH of the mounting medium, temperature during UV-exposure and the quality (wavelength) of UV-light influenced the differential staining. Exposure of blacklight of 10–5 M Hoechst 33528-stained BrdU-labeled chromosome specimens mounted in McIlvaine buffer (pH 8.0) at 50° C reproducibly allowed differential staining of sister chromatids within 15 min. On the other hand, Korenberg-Freedlender's method using no Hoechst 33258 was also UV-light-dependent. Thus, photolysis of BrdU-substituted DNA was considered the basic mechanism of the Giemsa methods where the photosensitive Hoechst 33258 played a role as a sensitizer.  相似文献   

12.
The direct staining of BUdR-substituted Chinese hamster chromosomes in a 4Na-EDTA-Giemsa solution resulted in a B-dark type of sister chromatid differential staining (SCD) in which bifilarly substituted chromatids stained dark. On the other hand, when BUdR-substituted chromosomes were pretreated with a 4Na-EDTA solution and then stained with Giemsa, a B-light type SCD was obtained in which bifilarly substituted chromatids stained light.  相似文献   

13.
Germinated seeds ofVicia faba were continuously irradiated at low dose rate of gamma rays (0.05 Gy h-1) up to a total accumulated dose of 2 Gy. The FPG (fluorescence plus Giemsa) technique of differential chromatid staining was used to monitor the frequency of sister chromatid exchanges (SCEs) in irradiated root tip meristem cells. The results of the experiments have demonstrated that SCE frequency is raised by continuous gamma irradiation only in plant cells containing BrdU in the chromosomal DNA. No effect concerning SCE formation was recorded at continuous irradiation of meristematic cells of Vicia faba with native, i. e. BrdU-nonsubstituted, DNA. In contrast to SCEs, a significant increase was found in the yield of chromosomal aberrations in all variants of irradiation.  相似文献   

14.
Fixed human metaphase chromosomes, whose DNA had been substituted with 5-bromodeoxyuridine (BrdUrd) for two rounds of replication (TB/BB) or for one round in BrdUrd followed by another round in thymidine (TT/BT), were treated with ultraviolet light (UV), in the presence or in the absence of 33258 Hoechst, to produce sister chromatid differentiation (SCD). Giemsa staining was compared with staining with monoclonal antibodies to double-stranded or single-stranded DNA. We confirmed that UV acts by debrominating BrdUrd-stubstituted DNA but showed that debromination alone cannot explain all our findings. We postulated that UV-induced protein-protein cross-linking, occurring to a different extent in differently BrdUrd-substituted chromatids, may also be invoked in explaining our data. Lastly, the different behaviour of unifilarly substituted TB as opposed to BT chromatids in UV-treated chromosomes, allowed us to hypothesize that such chromatids may differ depending on whether or not newly synthesized DNA is formed on a BrdUrd-containing strand.  相似文献   

15.
A modified fluorescence-plus-Giemsa technique is described that allows differential staining of sister chromatids in root tip cells from cuttings of Tradescantia paludosa. With this staining technique, chromatids with both DNA strands unsubstituted are differentiated from chromatids containing 5-bromouracil in place of thymine in one of the strands of the DNA duplex. The baseline level of sister chromatid exchanges was shown to be dependent on the concentration of 5-bromodeoxyuridine in the treatment solution, the mean frequency being 43.5 sister chromatid exchanges per cell for the experimental protocol suggested.  相似文献   

16.
This paper analyses the effect of acid hydrolysis on the differential Giemsa staining of 5-bromo-2deoxyuridine (BrdU) substituted chromatids in human and plant chromosomes, after treatment with a fluorochrome and light. Human lymphocytes and Allium cepa L. root tips were grown in BrdU for two or three cell cycles. Lymphocyte spreadings and meristem squashes were treated with fluorochrome Hoechst 33258, exposed to sunlight, hydrolysed with 5N HCl and stained with Giemsa. This acid hydrolysis improves the differential staining of BrdU substituted and non-substituted chromatin. It also allows the differentiation of sister chromatids with the DNA specific dye azure-A.  相似文献   

17.
A modified fluorescence-plus-Giemsa technique is described that allows differential staining of sister chromatids in root tip cells from cuttings of Tradescantia patudesa. With this staining technique, chromatids with both DNA strands unsubstituted are differentiated from chromatids containing 5-bromouracil in place of thymine in one of the strands of the DNA duplex. The baseline level of sister chromatid exchanges was shown to be dependent on the concentration of 5-bromodeoxyuridine in the treatment solution, the mean frequency being 43.5 sister chromatid exchanges per cell for the experimental protocol suggested.  相似文献   

18.
Summary Experiments were performed to find out whether different mechanisms are involved in FPG-(fluorescent plus Giemsa) staining for the demonstration of replication patterns and sister chromatid differentiation (SCD) after bromodeoxyuridine (BrdU)-substitution of V79 Chinese hamster chromosomes. The influence of variations of the staining procedure on the quality of both SCD and replication patterns was comparatively investigated and differences in the demonstration of these two phenomena within the same chromosome were studied using various BrdU-labeling protocols. The results show that at least graduated differences exist. For a good differentiation of replication patterns a stronger FPG-treatment is necessary than it is for SCD. Partial BrdU substitution only leads to replication patterns in the next mitosis. A further round of replication either in the presence or absence of BrdU causes a reduced staining of the complete chromatid and three-way differentiation is seen in third generation mitoses. These results support the view that alterations of chromosomal proteins during BrdU-incorporation and replication of BrdU-substituted DNA are decisive for differential staining.  相似文献   

19.
A differential Giemsa staining between sister chromatids was obtained by treating chromosomes replicated twice in medium containing 5-bromodeoxyuridine (BrdU) with Hoechst 33258 plus black light at 55 degrees C (HB pretreatment) and deoxyribonuclease (DNase) I, II, or micrococcal nuclease. In this staining pattern the BrdU bifilarly substituted chromatids were darkly and the unifilarly substituted chromatids lightly stained. This staining pattern was obtained only by staining the HB-DNase I-treated chromosomes with Giemsa and methylene blue, not by several other dyes tested. Relatively more DNA labelling was removed from the non-BrdU-substituted than the BrdU-substituted chromosomes, when the HB-pretreated chromosomes were digested with DNase I. But the protein labelling was not removed appreciably in the same treatment. The differential DNase I sensitivity between the non-BrdU-substituted and BrdU-substituted chromosomes disappeared when the HB-pretreated chromosomes were incubated with proteinase K before The DNase I digestion. Moreover, no differential DNase I sensitivity was found between the HB-pretreated isolated DNA containing and not containing BrdU. We propose that during the HB pretreatment, more DNA-protein cross-linkings are induced in BrdU bifilarly substituted than the unifilarly substituted chromatids. This structure protects the chromosomal DNA against the DNase I digestion. Thus, a reverse differential Giemsa staining between sister chromatids is obtained by the HB-DNase I treatment.  相似文献   

20.
Chromosomes of Chinese hamster strain cells were air-dried on slides after BrdU substitution for two or three rounds of replication. The preparations were treated with 20% PCA at 55 degrees C for 20-30 min, or 5N HCl at 55 degrees C for 15-20 min. After staining with Giemsa, unifilarly BrdU-substituted chromatids stained faintly and bifilarly substituted chromatids stained darkly. Such a pattern of sister chromatid differential staining was confirmed by the examination of metaphase cells grown with BrdU for three rounds of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号