首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we proposed a testis-mediated germline chimera production system based on the transplantation of testicular cells directly into heterologous testes. The testicular cells of juvenile (4-wk-old) or adult (24-wk-old) Korean Ogol chickens with a recessive pigmentation inhibitory gene, with or without prior culture, were injected (2 x 10(7) cells/head) into the seminiferous tubules of juvenile or adult recipients with White Leghorn with a dominant pigmentation inhibitory gene in a 2 x 2 factorial arrangement. The localization of transplanted cells into the inner space of the seminiferous tubules was confirmed within 24 h after injection. Subsequent testcross analyses showed that 7.8% (5/64) of the recipients had chimeric status in their testes. The periods of time from transfer to hatching of the first progeny with black feathers were 38 and 45 days for adult cells transplanted into an adult recipient, 188 days for adult cells into a juvenile recipient, and 137 days for juvenile cells into a juvenile recipient. Culture of the testicular cells derived both colony-forming and monolayer-forming cells. The colony-forming cells were stained positively for periodic acid Schiff solution, and further reacted with anti-SSEA-1, anti-SSEA-3, and anti-SSEA-4 antibodies both before and after culture for 15 days. In conclusion, it may be possible to develop the testis-mediated germline chimera production technique, which extends the feasibility of genetic manipulations in avian species.  相似文献   

2.
High frequency production of zebrafish germline chimeras was achieved by transplanting ovarian germ cells into sterile Danio hybrid recipients. Ovarian germ cells were obtained from 3-mo-old adult Tg(vasa:DsRed2-vasa);Tg(bactin:EGFP) double transgenic zebrafish by discontinuous Percoll gradient centrifugation. An average of 755 ± 108 DsRed-positive germ cells was recovered from each female. For transplantations, a total of approximately 620 ± 242 EGFP-positive cells of which 12 ± 4.7 were DsRed-positive germ cells were introduced into the abdominal cavity under the swim bladder of 2-wk-old sterile hybrid larvae. Six weeks after transplantation, a total of 10 recipients, obtained from 2 different transplantations, were examined, and 2 individuals (20%) were identified that possessed a large number of DsRed- and EGFP-positive cells in the gonadal region. The transplanted ovarian germ cells successfully colonized the gonads and differentiated into sperm in the male hybrid recipients. Of 67 adult recipients, 12 (18%) male chimeric fish reproduced and generated normal offspring when paired with wild-type zebrafish females. The fertilization efficiency ranged from 23% to 56%. Although the fertile male chimeras were generated by transplantation of ovarian germ cells, the F1 generation produced by the male chimeras contained both male and female progeny, indicating that male sex determination in zebrafish is not controlled by sex chromosome heterogamy. Our findings indicate that a population of ovarian germ cells that are present in the ovary of adult zebrafish can function as germline stem cells, able to proliferate and differentiate into testicular germ cells and functional sperm in male recipients. The high frequency of germline chimera formation achieved with the ovarian germ cells and the convenience of identifying the chimeras in the sterile host background should make this transplantation system useful for performing genetic manipulations in zebrafish.  相似文献   

3.
Culture, transfection and immortalization of mouse germ line stem cells, germ cell transplantation and grafting of testicular tissue are milestones of recent biotechnological breakthroughs. Alone and in combination they offer new pathways to explore the cellular mechanisms responsible for pluripotency and the requirements of cells to enter the germ line. Efficient markers, isolation and culture systems as well as transfection approaches are developed to elucidate the molecular and cellular mechanisms leading to the development of male germ line cells. Here, we describe the localization pattern of c-kit, Notch-1 and GFRalpha-1 in postnatal, immature and adult testes. All three proteins are potentially useful markers for spermatogonial characterization and enrichment. First attempts and various future perspectives to use spermatogonial stem cells as pathway for the introduction of transgenes are discussed.  相似文献   

4.
Ha JY  Park TS  Hong YH  Jeong DK  Kim JN  Kim KD  Lim JM 《Theriogenology》2002,58(8):1531-1539
We previously reported that germline chimeras could be produced by transfer of chicken gonadal primordial germ cells (gPGCs) cultured for a short term (5 days). This study was subsequently undertaken to examine whether gPGCs maintained in vitro for an extended period could retain their specific characteristics to induce germline transmission. Chicken (White Leghorn, WL) gPGCs were retrieved from embryos at stage 28 (5.5 days of incubation) and continuously cultured for 2 months in modified Dulbecco's minimal essential medium without subpassage and changing of the feeder cell layer. After the identification of gPGC characteristics using Periodic acid-Shiff's (PAS) reaction and anti stage-specific embryonic antigen-1 (SSEA-1) antibody staining at the end of the culture, cultured gPGCs were injected into the dorsal aorta of Korean Ogol Chicken (KOC) recipient embryos at stage 17 (2.5 days of incubation). Nineteen chickens (13 males and 6 females) were hatched, grown to sexual maturity, and subsequently subjected to testcross analysis employing artificial insemination with adult KOC. Of these, four (three males and one female) hatched chickens with white coat color. The percentage of germline chimerism was 21% (4/19). The results of this study demonstrated that gPGCs could maintain their specific characteristics for up to 2 months in vitro, resulting in the birth of germline chimeras following transfer to recipient embryos.  相似文献   

5.
Fibroblast growth factor 2 (FGF2) and glial cell line-derived neurotrophic factor (GDNF) are required to recapitulate spermatogonial stem cell (SSC) self-renewal in vitro. Although studies have revealed the role of the GDNF signaling pathway in SSCs, little is known about how FGF2 is involved. In the present study, we assessed the role of the FGF2 signaling pathway using a mouse germline stem (GS) cell culture system that allows in vitro expansion of SSCs. Adding GDNF or FGF2 induced phosphorylation of MAPK1/3, and adding the MAP2K1 inhibitor PD0325091 reduced GS cell proliferation and MAPK1/3 phosphorylation. Moreover, GS cells transfected with an activated form of Map2k1 not only upregulated Etv5 and Bcl6b gene expression, but also proliferated in an FGF2-independent manner, suggesting that they act downstream of MAP2K1 signaling to drive SSC self-renewal. Although GS cells transfected with Map2k1, Etv5 or Bcl6b showed normal spermatogonial markers, transplanting GS cells expressing Bcl6b into infertile mouse testes resulted in the formation of a germ cell tumor, suggesting that excessive self-renewal signals causes tumorigenic conversion. These results show that FGF2 depends on MAP2K1 signaling to drive SSC self-renewal via upregulation of the Etv5 and Bcl6b genes.  相似文献   

6.
7.
Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in vivo is unknown. We show, by RT-PCR analysis of cDNA from purified E10.5 germ cells, that germ cells express two FGF receptors: Fgfr1-IIIc and Fgfr2-IIIb. Second, we show that FGF-mediated activation of the MAP kinase pathway occurs in germ cells during their migration, and thus they are potentially direct targets of FGF signaling. Third, we use cultured embryo slices in simple gain-of-function experiments, using FGF ligands, to show that FGF2, a ligand for FGFR1-IIIc, affects motility, whereas FGF7, a ligand for FGFR2-IIIb, affects germ cell numbers. Loss of function, using a specific inhibitor of FGF signaling, causes increased apoptosis and inhibition of cell shape change in the migrating germ cells. Lastly, we confirm in vivo the effects seen in slice cultures in vitro, by examining germ cell positions and numbers in embryos carrying a loss-of-function allele of FGFR2-IIIb. In FGFR2-IIIb(-/-) embryos, germ cell migration is unaffected, but the numbers of germ cells are significantly reduced. These data show that a major role of FGF signaling through FGFR2-IIIb is to control germ cell numbers. The data do not discriminate between direct and indirect effects of FGF signaling on germ cells, and both may be involved.  相似文献   

8.
Bone marrow-derived stem cells (BMCs) are able to differentiate into multilineage cells such as muscle, bone, cartilage, fat, and nerve cells. In the present study, we investigated the differentiation capability of chicken BMCs into germ cells by using retinoic acid (RA) and chicken testis extract (chTE). The chicken BMCs were isolated from fetal chicken femurs on post-fertilization day 20, cultured in vitro, and treated with RA and chTE, respectively. The cultured chicken BMCs displayed fibroblast-like morphology and were positive for mesenchymal-specific markers such as CD44, CD90, and CD105 at the mRNA level. RT-PCR and immunocytostaining revealed that both RA and chTE treatments induced the expression of early-germ-cell markers such as Stra8, Dazl and DDX4. The increase of germ cell-specific gene expression after chTE treatment indicates that testicular environment-derived proteins may induce in vitro germ-cells. In addition, we performed a microarray analysis to identify differentially expressed genes (DEGs) in RA and chTE, respectively. A total of 1,629 DEGs were obtained and the chTE treatment showed very lower numbers of DEGs than the RA treatment. Collectively, our results indicate that chicken BMCs have the potential to differentiate to male germ cells in vitro with testis derived proteins.  相似文献   

9.
Derivation and characterization of pluripotent embryonic germ cells in chicken   总被引:24,自引:0,他引:24  
Embryonic germ (EG) cell lines established from primordial germ cells (PGCs) are undifferentiated and pluripotent stem cells. To date, EG cells with proven germ-line transmission have been completely established only in the mouse with embryonic stem (ES) cells. We isolated PGCs from 5.5-day-old (stage 28) chicken embryonic gonads and established a putative chicken EG cell line with EG culture medium supplemented with stem cell factor (SCF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), interleukin-11 (IL-11), and insulin-like growth factor-I (IGF-I). These cells grew continuously for ten passages (4 months) on a feeder layer of mitotically active chicken embryonic fibroblasts. After several passages, these cells were characterized by screening with the periodic acid-Schiff reaction, anti-SSEA-1 antibody, and a proliferation assay. The chicken EG cells maintained characteristics of gonadal PGCs and undifferentiated stem cells. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types. The chicken EG cells were injected into stage X blastodermal layer and produced chimeric chickens with various differentiated tissues derived from the EG cells. Chicken EG cells will be useful for the production of transgenic chickens and for studies of germ cell differentiation and genomic imprinting.  相似文献   

10.
Insulin-like growth factor (IGF) signaling is a critical regulator of somatic growth during fetal and adult development, primarily through its stimulatory effects on cell proliferation and survival. IGF signaling is also required for development of the reproductive system, although its precise role in this regard remains unclear. We have hypothesized that IGF signaling is required for embryonic germline development, which requires the specification and proliferation of primordial germ cells (PGCs) in an extragonadal location, followed by directed migration to the genital ridges. We tested this hypothesis using loss-of-function studies in the zebrafish embryo, which possesses two functional copies of the Type-1 IGF receptor gene (igf1ra, igf1rb). Knockdown of IGF1Rb by morpholino oligonucleotides (MO) results in mismigration and elimination of primordial germ cells (PGCs), resulting in fewer PGCs colonizing the genital ridges. In contrast, knockdown of IGF1Ra has no effect on PGC migration or number despite inducing widespread somatic cell apoptosis. Ablation of both receptors, using combined MO injections or overexpression of a dominant-negative IGF1R, yields embryos with a PGC-deficient phenotype similar to IGF1Rb knockdown. TUNEL analyses revealed that mismigrated PGCs in IGF1Rb-deficient embryos are eliminated by apoptosis; overexpression of an antiapoptotic gene (Bcl2l) rescues ectopic PGCs from apoptosis but fails to rescue migration defects. Lastly, we show that suppression of IGF signaling leads to quantitative changes in the expression of genes encoding CXCL-family chemokine ligands and receptors involved in PGC migration. Collectively, these data suggest a novel role for IGF signaling in early germline development, potentially via cross-talk with chemokine signaling pathways.  相似文献   

11.
This study reports for the first time the production of chicken germline chimeras by transfer of embryonic germ (EG) cells into recipient embryos of different strain. EG cells were established by the subculture of gonadal tissue cells retrieved from stage 28 White Leghorn (WL) embryos with I/I gene. During primary culture (P(0)), gonadal primordial germ cells (gPGCs) in the stromal cells began to form colonies after 7 days in culture with significant (P < 0.0001) increase in cell population. Colonized gPGCs were then subcultured with chicken embryonic fibroblast monolayer for EG cell preparation. Prepared EG cells or gPGCs at P(0) were transferred to stage 17 Korean Ogol chicken (KOC) embryos with i/i gene. The recipient chickens were raised for 6 months to sexual maturity, then a testcross analysis by artificial insemination was conducted for evaluating germline chimerism. As results, transfer of EG cells and gPGCs yielded total 17 germline chimeras; 2 out of 15 (13.3%) and 15 of 176 sexually matured chickens (8.5%), respectively. The efficiency of germline transmission in the chimeras was 1.5-14.6% in EG cells, while 1.3-27.6% in gPGCs. In conclusion, chicken germline chimeras could be produced by the transfer of EG cells, as well as gPGCs, which might enormously contribute to establishing various innovative technologies in the field of avian transgenic research for bioreactor production.  相似文献   

12.
13.
14.

Rationale

Stage specific embryonic antigen 1+ (SSEA1+) cells have been described as the most primitive mesenchymal progenitor cell in the bone marrow. Cardiac injury mobilizes SSEA1+ cells into the peripheral blood but their in vivo function has not been characterized.

Objective

We generated animals with chimeric bone marrow to determine the fate and function of bone marrow SSEA1+ cells in response to acute cardiac pressure overload.

Methods and Results

Lethally irradiated mice were transplanted with normal bone marrow where the wild-type SSEA1+ cells were replaced with green fluorescent protein (GFP) SSEA1+ cells. Cardiac injury was induced by trans-aortic constriction (TAC). We identified significant GFP+ cell engraftment into the myocardium after TAC. Bone marrow GFP+ SSEA1 derived cells acquired markers of endothelial lineage, but did not express markers of c-kit+ cardiac progenitor cells. The function of bone marrow SSEA1+ cells after TAC was determined by transplanting lethally irradiated mice with bone marrow depleted of SSEA1+ cells (SSEA1-BM). The cardiac function of SSEA1-BM mice declined at a greater rate after TAC compared to their complete bone marrow transplant counterparts and was associated with decreased bone marrow cell engraftment and greater vessel rarefication in the myocardium.

Conclusions

These results provide evidence for the recruitment of endogenous bone marrow SSEA1+ cells to the myocardium after TAC. We demonstrate that, in vivo, bone marrow SSEA1+ cells have the differentiation potential to acquire endothelial lineage markers. We also show that bone marrow SSEA1+ deficiency is associated with a reduced compensatory capacity to cardiac pressure overload, suggesting their importance in cardiac homeostasis. These data demonstrate that bone marrow SSEA1+ cells are critical for sustaining vascular density and cardiac repair to pressure overload.  相似文献   

15.
In the avian species, germline chimera production could be possible by transfer of donor germ cells into the blood vessel of recipient embryos. This study was conducted to establish an efficient transfer system of chicken gonadal primordial germ cells (gPGCs) for producing the chimeras having a high capacity of germline transmission. Gonadal PGCs retrieved from 5.5-day-old embryos (stage 28) of Korean Ogol chicken (KOC with i/i gene) were transferred into the dorsal aorta of 2.5-day-old embryos (stage 17) of White Leghorn chicken (WL with I/I gene). Prospective evaluations of whether culture duration (0, 5, or 10 days) and subsequent Ficoll separation of gPGCs before transfer affected chimera production and germline transmission in the chimeras were made while retrospective analysis was conducted for examining the effect of chimera sexuality. A testcross analysis by artificial insemination of presumptive chimeras with adult KOC was performed for evaluating each treatment effect. First, comparison was made for evaluating whether experimental treatments could improve chimera production, but none of the treatments were significantly (P = 0.6831) influenced (5.1%-14.4%). Second, it was determined whether each treatment could enhance germline transmission in produced chimeras. More (P < 0.0001) progenies with black feathers (i/i) were produced in the germline chimeras derived from the transfer of 10-day-cultured gPGCs than from the transfer of 0- or 5-day-cultured gPGCs (0.6%-7.8% vs. 10.7%-49.7%). Ficoll separation was negatively affected (P < 0.0001), whereas there was no effect in chimera sexuality (P = 0.6011). In conclusion, improved germline transmission of more than a 45% transmission rate was found in chicken chimeras produced by transfer of 10-day-cultured gPGCs being separated without Ficoll treatment.  相似文献   

16.
影响鸡原始生殖细胞分离克隆因素的研究(简报)   总被引:1,自引:0,他引:1  
具有多向分化潜能的胚胎干细胞有两种来源:一是来自于早期胚胎内细胞团的胚胎干细胞(Em.bryonic Stem Cells,ESCs),另一种是来自于胚胎生殖腺原始生殖细胞(Primordial Germ Cells,PGCs)的胚胎生殖细胞(Embryonic Germ Cells,EGCs)。  相似文献   

17.
Previous studies showed that the retina produces factors that promote the differentiation of lens fiber cells, and identified members of the fibroblast growth factor (FGF) and insulin-like growth factor (IGF) families as potential fiber cell differentiation factors. A possible role for the bone morphogenetic proteins (BMPs) is suggested by the presence of BMP receptors in chicken embryo lenses. We have now observed that phosphorylated SMAD1, an indicator of signaling through BMP receptors, localizes to the nuclei of elongating lens fiber cells. Transduction of chicken embryo retinas and/or lenses with constructs expressing noggin, a secreted protein that binds BMPs and prevents their interactions with their receptors, delayed lens fiber cell elongation and increased cell death in the lens epithelium. In an in vitro explant system, in which chicken embryo or adult bovine vitreous humor stimulates chicken embryo lens epithelial cells to elongate into fiber-like cells, these effects were inhibited by noggin-containing conditioned medium, or by recombinant noggin. BMP2, 4, or 7 were able to reverse the inhibition caused by noggin. Lens cell elongation in epithelial explants was stimulated by treatment with FGF1 or FGF2, alone or in combination with BMP2, but not to the same extent as vitreous humor. These data indicate that BMPs participate in the differentiation of lens fiber cells, along with at least one additional, and still unknown factor.  相似文献   

18.
Primordial germ cell (PGC) allocation, characterization, lineage restriction, and differentiation have been extensively studied in the mouse. Murine PGC can be easily identified using markers as alkaline phosphatase content or the expression of pluripotent markers such as Pou5f1, Nanog, Sox2, Kit, SSEA1, and SSEA4. These tools allowed us to clarify certain aspects of the complex interactions of somatic and germinal cells in the establishment of the germ cell lineage, its segregation from the neighbouring somatic tissue, and the guidance mechanisms during migration that direct most of the germ cells into the genital ridges. Few data are available from other domestic animals and here we reported our preliminary studies on the isolation, characterization, and in vitro culture of sheep PGCs. Sheep PGCs can be identified with the markers previously used in mouse, but, in some cases, these markers are not coherently expressed in the same cell depending on the grade of differentiation and on technical problems related to commercial antibodies used. Pluripotency of PGCs in culture (EGCs) from domestic animals also needs further evaluation even though the derivation of embryonic pluripotent cell lines from large mammals may be an advantage as they are more physiologically similar to the human and perhaps more relevant for clinical translation studies. Comprehensive epigenetic reprogramming of the genome in early germ cells, and derived EGCs including extensive erasure of epigenetic modifications, may be relevant for gaining insight into events that lead to reprogramming and establishment of totipotency. EGCs can differentiate in vitro in a various range of tissues, form embryonic bodies, but in many cases failed to generate tumours when transplanted into immunodeficient mice and are not able to generate germline chimeric animals after their transfer. Such incomplete information clearly indicates the urge to improve the studies on derivation of stem cells in farm animals and shows the need for a multidisciplinary investigation in order to create farm animal models to set up suitable ethical and technical systems for cell regenerative therapies in humans.  相似文献   

19.
《The Journal of cell biology》1990,111(5):1785-1792
The properties and inducibility of the heat shock protein 70 (hsp 70) gene products were examined during differentiation of mouse testicular cells by one and two-dimensional gel electrophoresis and immunoblotting. Low levels of the 72- and 73-kD heat shock proteins normally found in mouse cell lines were detected in the mouse testis. A novel isoform with a relative molecular mass of 73 kD (called 73T) was also observed, in the presence or absence of heat shock. 73T was shown to be produced by germ cells since it was not detected in testes from mutant mice devoid of germ cells. Furthermore, 73T was found only in adult mouse testicular cells, not in testes from animals that lack meiotic germ cells. 73T was synthesized in enriched cell populations of both meiotic prophase and postmeiotic cells, but was not inducible by in vitro heat shock. In the adult testis, low levels of the bona fide 72-kD heat-inducible (hsp72) were induced in response to elevated temperatures. In contrast, in testes from animals in which only somatic cells and premeiotic germ cells were present, there was a substantial induction of hsp 72. It is suggested that hsp 72 is inducible in the somatic compartment and possibly in the premeiotic germ cells, but not in germ cells which have entered meiosis and which are expressing members of the hsp 70 gene family in a developmentally regulated fashion.  相似文献   

20.
Gonadal primordia, isolated from fetal mice on the 11th or 12th day of gestation, differentiated in vitro into morphologically distinct testes or ovaries after 7 days in culture. The addition of cAMP analogues into culture media prevented the differentiation of testis cords. Histological examination indicated that the basement membranes of testis cords disintegrated after treatment with cAMP analogues, while development of germ cells and Leydig cells appeared to be unaffected. Fetal testes in culture secreted testosterone which increased following addition of dibutyryl-cAMP (Bt2 c-AMP). Primordial germ cells reached prespermatogonial stage in the presence or absence of Bt2 cAMP, suggesting that progressive differentiation of primordial germ cells is independent of testis cord organization. The Bt2 cAMP-treated explants resumed testicular development after transplantation into a site beneath the kidney capsules of adult mice, although the inhibitory effect appeared irreversible in vitro. The testicular organization-preventing effect of cAMP analogues was mimicked by prostaglandins or forskolin, which are known to stimulate adenylate cyclase. The inhibitory effect of either cAMP analogues or prostaglandins was potentiated when added in combination with phosphodiesterase inhibitors. The present results suggest that increase of intracellular cAMP prevents the development of basement membrane and the assembly of cells to form testicular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号