首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Aqueous, methanol, ethyl acetate, and chloroform extracts of the root, stem, and leaf of Raphanus sativus were studied for antibacterial activity against food-borne and resistant pathogens. All extracts except the aqueous extracts had significant broad-spectrum inhibitory activity. The ethyl acetate extract of the root had the potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.016–0.064 mg/ml and a minimum bactericidal concentration (MBC) of 0.016–0.512 mg/ml against health-damaging bacteria. This was followed by the ethyl acetate extracts of the leaf and stem with MICs of 0.064–0.256 and 0.128–0.256 mg/ml, respectively and MBCs of 0.128–2.05 and 0.256–2.05 mg/ml, respectively. The ethyl acetate extracts of the different parts of R. sativus retained their antibacterial activity after heat treatment at 100°C for 30 min, and their antibacterial activity was enhanced when pH was maintained in the acidic range. Hence this study, for the first time, demonstrated that the root, stem, and leaf of R. sativus had significant bactericidal effects against human pathogenic bacteria, justifying their traditional use as anti-infective agents in herbal medicines.  相似文献   

2.
A total of 48 strains were isolated from the normal tissues of Malus halliana and the EtOAc extracts of their cultures were subjected to primary antimicrobial screening against four test bacteria and three fungi. As a result, 22 strains exhibited antimicrobial activity against at least one test microbe. Among them, Alternaria brassicicola ML-P08 showing strong activity (MICs: 0.31–2.50 mg/ml) was selected for further investigation on its secondary metabolites. Bioassay-guided fractionation of the EtOAc extract of its liquid culture afforded seven compounds, which were identified as alternariol (1), alternariol 9-methyl ether (2), altechromone A (3), herbarin A (4), cerevisterol (5), 3β,5α-dihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (6) and 3β-hydroxy-(22E,24R)-ergosta-5,8,22-trien-7-one (7), respectively, by spectral means (MS, IR, 1H- and 13C-NMR). In vitro antimicrobial assay showed that compound 3 was substantially active against Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens and Candida albicans with the MICs of 3.9, 3.9, 1.8, and 3.9 μg/ml, respectively. Compound 4 also showed pronounced antifungal activity against Trichophyton rubrum and C. albicans with MICs of both 15.6 μg/ml. In addition, compound 1 exhibited strong xanthine oxidase inhibitory activity with the IC50 of 15.5 μM, comparable to that of positive control, allopurinol (IC50: 10.7 μM).  相似文献   

3.
The antimicrobial activity of 19 propolis extracts prepared in different solvents (ethanol and propylene glycol) (EEP/PEP), was evaluated against some bacterial and fungal isolates using the agar-well diffusion method. It was verified that all the samples tested showed antimicrobial activity, although results varied considerably between samples. Results revealed that both types of propolis extracts showed highly sensitive antimicrobial action against Gram-positive bacteria and fungi at a concentration of 20% (Staphylococcus aureus, Streptococcus mutans, Candida albicans and Saccharomyces cerevisae) with a minimal inhibitory concentration (MIC) ranging from 0.5 to 1.5 mg/ml, with a moderate effect against Streptococcus pyogenes (MIC from 17 to 26 mg/ml). To our knowledge, this is the first study showing elevated antimicrobial activity against Gram-negative bacteria [Salmonella enterica (MIC from 0.6 to 1.4 mg/ml)] and lesser activity against Helicobacter pylori (MIC from 6 to 14 mg/ml), while Escherichia coli was resistant. This concluded that the Basque propolis had a strong and dose-dependent activity against most of the microbial strains tested, while database comparison revealed that phenolic substances were responsible for this inhibition, regardless of their geographical origin and the solvent employed for extraction. Statistical analysis showed no significant differences (P ≤ 0.05) between EEP and PEP extracts.  相似文献   

4.
The aim of this work was to select endophytic fungi from mangrove plants that produced antimicrobial substances. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) or minimal fungicidal concentrations (MFC) of crude extracts from 150 isolates were determined against potential human pathogens by a colorimetric microdilution method. Ninety-two isolates (61.3%) produced inhibitory compounds. Most of the extracts (28–32%) inhibited Staphylococcus aureus (MIC/MBC 4–200/64–200 μg ml−1). Only two extracts inhibited Pseudomonas aeruginosa (MIC/MBC 200/>200 μg ml−1). 25.5 and 11.7% inhibited Microsporum gypseum and Cryptococcus neoformans (MIC/MFC 4–200/8–200 μg ml−1 and 8–200/8–200 μg ml−1, respectively), while 7.5% were active against Candida albicans (MIC/MFC 32–200/32–200 μg ml−1). None of the extracts inhibited Escherichia coli. The most active fungal extracts were from six genera, Acremonium, Diaporthe, Hypoxylon, Pestalotiopsis, Phomopsis, and Xylaria as identified using morphological and molecular methods. Phomopsis sp. MA194 (GU592007, GU592018) isolated from Rhizophora apiculata showed the broadest antimicrobial spectrum with low MIC values of 8–32 μg ml−1against Gram-positive bacteria, yeasts and M. gypseum. It was concluded that endophytic fungi from mangrove plants are diverse, many produce compounds with antimicrobial activity and could be suitable sources of new antimicrobial natural products.  相似文献   

5.
The chemical composition of five aromatic plants (Mentha longifolia, M. pulegium, Eugenia caryophyllata, Thymus vulgaris and Rosmarinus officinalis) frequently used in food preparation in Tunisia was analysed by GC-MS. The antimicrobial effect of the essential oils obtained from these plants was tested against Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio fluvialis strains. Thyme oil exhibited a high level of antimicrobial activities against Vibrio spp. strains. The diameter of the zones of growth inhibition for V. parahaemolyticus species was interestingly high (ranging from 14.66 to 28 mm). The MIC and MBC values were interestingly low for thyme oil (MIC 0.078–0.156 mg/ml) and (MBC >0.31–1.25 mg/ml). These results showed that these plants especially thyme and clove, can be to be used for seafood preparation to protect against contamination by Vibrio spp. strains. An erratum to this article can be found at  相似文献   

6.
Purpose of the present study was to evaluate antioxidant, antibacterial, antifungal, and antiviral activities of the petroleum ether, chloroform, ethyl acetate and methanol extracts as well as the alkaloid fraction of Lycopodium clavatum L. (LC) from Lycopodiaceae growing in Turkey. Antioxidant activity of the LC extracts was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method at 0.2 mg/ml using microplate-reader assay. Antiviral assessment of LC extracts was evaluated towards the DNA virus Herpes simplex (HSV) and the RNA virus Parainfluenza (PI-3) using Madin-Darby Bovine Kidney (MDBK) and Vero cell lines. Antibacterial and antifungal activities of the extracts were tested against standard and isolated strains of the following bacteria; Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis as well as the fungi; Candida albicans and C. parapsilosis. All of the extracts possessed noteworthy activity against ATCC strain of S. aureus (4 μg/ml), while the LC extracts showed reasonable antifungal effect. On the other hand, we found that only the chloroform extract was active against HSV (16–8 μg/ml), while petroleum ether and alkaloid extracts inhibited potently PI-3 (16–4 μg/ml and 32–4 μg/ml, respectively). However, all of the extracts had insignificant antiradical effect on DPPH. In addition, we also analyzed the content of the alkaloid fraction of the plant by capillary gas chromatography-mass spectrometry (GC-MS) and identified lycopodine as the major alkaloid.  相似文献   

7.
Acacia catechu, commonly known as catechu, cachou and black cutch is an important medicinal plant and an economically important forest tree. The methanolic extract of this plant was found to have antimicrobial activities against six species of pathogenic and non-pathogenic microorganisms: Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa and Candida albicans. The maximum zone of inhibition (20 mm) was found to be exhibited against S. aureus. For this organism the minimum bactericidal concentration (MBC) of the crude extract was 1,000 μg/ml. The extract was found to be equally effective against gram positive and gram negative bacteria. The antimicrobial activity of the extract was found to be decreased during purification. The chemical constituents of organic plant extracts were separated by thin layer chromatography (TLC) and the plant extracts were purified by column chromatography and were further identified by Gas chromatography–mass selection (GC–MS) analysis. The composition of A. catechu extract had shown major components of terpene i.e. camphor (76.40%) and phytol (27.56%) along with other terpenes in minor amounts which are related with their high antibacterial and antifungal properties.  相似文献   

8.
Essential oil of the subterranean part of Cacalia tangutica (Maxim.) Hand.-Mazz was analyzed by gas chromatography (GC)-mass spectrum (MS) technique in two different capillary columns of different polarities. Thirty-one components were identified in the oil and the main compounds were α-zingiberene (13.49%), germacrene D (10.76%), α-pinene (8.54%), caryophyllene(Z-) (6.36%), linalool (6.16%), β-myrcene (4.89%), β-ocimene (Z-) (4.40%)and ocimenone(Z-) (3.58%). The antimicrobial activity of the oil was evaluated against 2 fungi and 12 bacteria including 6 clinically isolated strains using the agar disc diffusion and broth microdilution methods. The results show that the oil presented a broad antimicrobial spectrum and had better antimicrobial activity against yeast and gram-positive bacteria. The minimum inhibitory concentration values were 0.16–5.00 g/L and minimum bactericidal concentration values were 0.16–5.00 g/L. __________ Translated from Journal of Wuhan University (Science Edition), 2007, 53 (2): 198–203 [译自: 武汉大学学报(理学版)]  相似文献   

9.
The antimicrobial activity of saponin fractions from the leaves of Gymnema sylvestre and Eclipta prostrata was evaluated against pathogenic bacteria and fungi in an in vitro condition. A series of concentrations of crude and pure saponin fractions were tested for antimicrobial activity by zone of inhibition method. The pure saponin fractions were found to be more effective against tested bacterial pathogens when compared to crude saponin fractions. The minimum inhibitory concentration (MIC) exhibited by the pure saponin fraction of G. sylvestre was found to be in the range of 600–1,200 mg/l against bacterial strains and 1,400 mg/l for fungal isolates. In the case of E. prostrata, the range was 1,000–1,200 mg/l for bacteria and 1,400 mg/l for fungal isolates. The susceptibility of bacterial pathogens for saponin fractions was in the order of Paeruginosa, E. coli, S. typhi, K. pneumoniae, P. mirablis, S. aureus and for fungal pathogens A. fumigatus followed by A. niger and A. flavus. Whereas, A. niger was more susceptible to inhibition by E. prostrata saponin fractions, followed by A. flavus and A. fumigatus. The antimicrobial potential of saponin fractions was compared with antibiotics, Chloramphenicol and Amphotericin-B with respect to bacteria and fungi. The present study suggests that the saponin fractions G. sylvestre and E. prostrata possess significant antibacterial and antifungal activity. Our results further suggest that saponins of G. sylvestre and E. prostrata can be used as a potential fungicide against pathogenic fungi.  相似文献   

10.
A bacterium identified as Pseudomonas fluorescence was isolated from Taxus baccata rhizosphere. Ethyl acetate extract from its culture filtrate yielded an active antimicrobial compound that was purified by TLC. The active metabolites were resolved by column chromatography on silica gel (60–120 mesh). The compound was further characterized on the basis of spectral data (UV, IR and 1HNMR), which indicated the presence of an aromatic ring and phenolic functionality. The compound showed significant antimicrobial activity against two-gram positive bacteria (B. subtilis and S. aureus), four-gram negative bacteria (E. coli, K. pneumoniae, S. flexneri and P. aeruginosa), and one pathogenic fungus (Candida albicans). The minimum inhibitory concentration (MIC) of the compound ranged between 75μg to 250 μg/ml.  相似文献   

11.
The antimicrobial properties of acetone, methanol, and aqueous extracts of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica were studied comparatively in vitro. Antimicrobial activities of the extracts of different lichens were estimated by the disk diffusion test for Gram-positive bacteria, Gram-negative bacteria, and fungal organisms, as well as by determining the MIC (minimal inhibitory concentration). The obtained results showed that the acetone and methanol extracts of Lasallia pustulata, Parmelia sulcata, and Umbilicaria crustulosa manifest antibacterial activity against the majority of species of bacteria tested, in addition to selective antifungal activity. The MIC of lichen extracts was lowest (0.78 mg/ml) for the acetone extract of Lasallia pustulata against Bacillus mycoides. Aqueous extracts of all of the tested lichens were inactive. Extracts of the lichen Umbilicaria cylindrica manifested the weakest activity, inhibiting only three of the tested organisms.  相似文献   

12.
By using HPLC/UV–VIS, Croatian barberry (Berberis croatica Horvat) was found to be a new source of the bioactive alkaloid berberine. Comparison of berberine content in roots, leaves, and twigs between wild specimens of B. croatica and B. vulgaris collected in Croatia showed that the roots of both species contained the highest berberine content (B. croatica 1.120–1.217%; B. vulgaris 0.805–1.424%), followed by twigs (B. croatica 0.049–0.216%; B. vulgaris 0.077–0.112%). While the berberine content in the leaves of both species was very low (between 0.002% and 0.044%), they were found to be rich in phenols and flavonols. The Student’s t-test showed a significant difference at P < 0.05 for phenol and flavonol content in the plant organs, both between species and within species. Leaf samples were most variable, while root samples were the least. Extracts from the roots of both barberry species expressed antimicrobial activity against Bacillus subtilis NCTC 8236, Staphylococcus aureus ATCC 6538, Escherichia coli ATCC 10535, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231. Antimicrobial activity of leaf extracts was species-dependent. Root extracts of both species also showed lower MIC values than other extracts (MIC ≤ 87.5 mg/ml).  相似文献   

13.
Lactoferricin B (LfcinB), a 25 residue peptide derived from the N-terminal of bovine lactoferrin (bLF), causes depolarization of the cytoplasmic membrane in susceptible bacteria. Its mechanism of action, however, still needs to be elucidated. In the present study, synthetic LfcinB (without a disulfide bridge) and LfcinB (C–C; with a disulfide bridge) as well as three derivatives with 15-, 11- and 9-residue peptides were prepared to investigate their antimicrobial nature and mechanisms. The antimicrobial properties were measured via minimum inhibitory concentration (MIC) determinations, killing kinetics assays and synergy testing, and hemolytic activities were assessed by hemoglobin release. Finally, the morphology of peptide-treated bacteria was determined by atomic force microscopy (AFM). We found that there was no difference in MICs between LfcinB and LfcinB (C–C). Among the derivatives, only LfcinB15 maintained nearly the same level as LfcinB, in the MIC range of 16–128 μg/ml, and the MICs of LfcinB11 (64–256 μg/ml) were 4 times more than LfcinB, while LfcinB9 exhibited the lowest antimicrobial activity. When treated at MIC for 1 h, many blebs were formed and holes of various sizes appeared on the cell surface, but the cell still maintained its integrity. This suggested that LfcinB had a major permeability effect on the cytoplasmic membrane of both Gram-positive and Gram-negative bacteria, which also indicated it may be a possible intracellular target. Among the tested antibiotics, aureomycin increased the bactericidal activity of LfcinB against E. coli, S. aureus and P. aeruginosa, but neomycin did not have such an effect. We also found that the combination of cecropin A and LfcinB had synergistic effects against E. coli.  相似文献   

14.
The emergence of multidrug resistant pathogens threatened the clinical efficacy of many existing antibiotics. This situation has been recognized globally as a serious concern and justifies further research to discover antimicrobial agents from natural origins including plant extracts. The aim of our work was to evaluate the antimicrobial activities of Scabiosa arenaria Forssk . extracts and pure compounds using a bioguided fractionation, and try to explain some traditional use of this genus. The best antimicrobial activity‐guided fractionation was obtained by BuOH fractions of flowers, fruits and (stems and leaves) against Escherichia coli, Pseudomonas aeruginosa and Candida albicans with minimum inhibitory concentration (MIC) values from 0.0195 to 5 mg/ml. Escherichia coli was the most affected bug, thus the MIC of fruits BuOH extract showed the best anti‐Escherichia coli activity (MIC = 0.0195 mg/ml), followed by the (stems and leaves) and flowers BuOH extracts; MIC = 0.078 and 0.15 mg/ml, respectively. Furthermore, the subfractions obtained from these three mixed fractions showed also an important antimicrobial activity against the three microorganisms, with MIC values between 0.0195 and 0.312 mg/ml. The fractionation of the aerial part BuOH fraction led to the isolation of oleanolic acid ( 1 ) and luteolin 7‐O‐glucopyranoside ( 2 ) which are reported here for the first time from Sarenaria. Both compounds showed good antimicrobial activities with MIC values ranging from 170 to 683 μm and 86 to 347 μm , respectively. These results support the use of the Scabiosa genus to inhibit the growth of tested pathogenic bacteria and yeasts which may reduce illnesses associated with their exposure.  相似文献   

15.
In this study, in vitro antimicrobial activity of the physodic acid, usnic acid, atranorin and gyrophoric acid isolated from the lichens Hypogymnia physodes, Parmelia caperata, Physcia aipolia and Umbilicaria polyphylla, has been investigated. An antibiotic assessment was done against six bacteria (three Gram-positive and three Gram-negative) and eight fungi by determining the minimal inhibitory concentration (MIC) by the broth tube dilution method. The tested lichen substances inhibited growth of all the tested microorganisms. The bacteria showed a higher sensitivity against the tested fungi. The highest antimicrobial activity was found in the usnic acid of the Parmelia caperata lichen, where the lowest MIC was 0.0037 mg/ml against the Klebsiella pneumoniae (even lower than the one given by the streptomycin standard). The weakest antimicrobial activity was found in the physodic acid, which inhibited most of the microorganisms in the concentration of 1 mg/ml. Generally, all the components had relatively strong antimicrobial activity against the tested microorganisms, among which were human and animal pathogens. This could be of significance for their use for pharmaceutical purposes.  相似文献   

16.
In order to select bacterial strains effectively secreting mannanase activity for the production of prebiotic mannooligosaccharides, a two-step screening procedure was performed. Enriched cultures from isolation medium containing copra meal were primary screened on an isolation agar medium containing 1% locust bean gum (LBG), which resulted in 48 mannanase-producing bacterial isolates with significant clearing zones on the mannan-containing agar. However, only nine isolates showed appreciable mannanase activities against copra meal in their culture supernatants (0.054–0.185 U/mg of protein) as determined in a standard assay based on the detection of reducing sugars released from this substrate. The isolates CW2-3 and ST1-1 displayed the highest activity against LBG and copra meal, respectively. Copra mannan hydrolysates that were obtained by using crude mannanase from these nine isolates were further used for a secondary screening towards a growth-enhancing activity on Lactobacillus reuteri and inhibitory activity against Escherichia coli as well as Salmonella Enteritidis, resulting in 0.09–2.15 log CFU/ml enhancing activity and low inhibitory activity of 0.46–1.78 log CFU/ml as well as 0.37–1.72 log CFU/ml, respectively. The hydrolysate of CW2-3 mannanase showed the highest enhancing activity of 2.15 log CFU/ml while isolate ST1-1 was most effective with respect to growth inhibition against E. coli E010 and S. Enteritidis S003 with 0.76 and 1.61 log CFU/ml, respectively. Based on morphological, physical, biochemical and genetics properties, isolates CW2-3 and ST1-1 were identified as Klebsiella oxytoca and Acinetobacter sp., respectively. Crude mannanase activity from these two strains was characterized preliminarily. The pH optima of mannanase activity from Klebsiella oxytoca CW2-3 and Acinetobacter sp. ST1-1 were 7 and 6, respectively. The enzymes were stable at 4°C over a pH range of 3–6 and 3–10, respectively.  相似文献   

17.
Microbes are increasingly developing defensive mechanisms against known drugs via mutations. There are signs of emergence of superbugs immune to most known antibiotics available. The need for a new class of drugs to counteract this problem is of paramount importance for continued general well being of mankind. A new class of drugs, antimicrobial peptides, has not been fully exploited primarily due to high cytotoxicity, poor lipophilicity preventing systemic distribution and stability. We have synthesised 9-amino acid residue cationic peptides RH01 and RH02 lipidated with myristoyl and octyl groups respectively. These peptides exhibited potent antimicrobial activity and low cytotoxicity. The lipopeptide RH01 has antimicrobial activity against a broad range of microorganisms including bacteria, yeast and filamentous fungi with greatest activity toward Gram-positive bacteria, including S. aureus MRSA stain, MIC’s ranging between 2–8 μM. The MIC for Gram-negative bacteria was higher ranging from between 30–250 μM. RH01 also had antimicrobial activity towards fungi showing good activity against the pathogenic yeast Candida albicans but was less active towards the filamentous fungi Aspergillus niger. The antimicrobial activity of RH01 as a measure of Ki(50) for E. coli and S. aureus was 35–60 μM and 3–7 μM, respectively. In-house data showed the compound is bactericidal even at higher bacteria concentration. The octylated lipopeptide RH02 has similar activities towards S. aureus (3.3 μM) and E coli (53.3 μM) as the myristolated RH01. There was no haemolytic activity of the lipopeptide RH01 towards human blood. Acute intravenous toxicity study in mice showed that both RH01 and RH02 induced no macroscopic abnormalities at their highest non-lethal dose of 75 mg/kg and 150 mg/kg bodyweight, respectively.Australian Peptide Conference Issue.  相似文献   

18.
Four acyloxy-isopimarane derivatives along with two known isopimarane diterpenoids, the flavone cirsimaritin and the sterols β-sitosterol and stigmasterol were isolated from the aerial parts of Aeollanthus rydingianus. The structures of the compounds were established on the basis of spectroscopic analysis and chemical evidence. The isolated substances were screened for antimicrobial activity against Gram-positive and Gram-negative bacteria and a yeast strain. 19-Acetoxy-7,15-isopimaradien-3β-ol and 7,15-isopimaradien-19-ol showed minimum inhibitory concentration (MIC) values of 3.90–15.62 μg/ml for Staphylococcus aureus and of 7.81 μg/ml for Enterococcus hirae.  相似文献   

19.
Gene cloning, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa were investigated in this paper. A lipase gene with whole ORF encoding 215 amino acids was obtained by PCR, protein domain prediction suggested that the deduced lipase belongs to α/β hydrolases family. Based on single factor Seriatim-Factorial test and Plackett–Burman experimental design, the optimal medium consisted of (per l) 12.5 ml maize oil, 5.0 g beef extract, 2.0 g PO4 3− (0.6 g KH2PO4, 1.4 g K2HPO4), 17.15 g Mg2+, 5.0 g yeast extract, 2.282 g CaCl2 and 5.0 ml Tween80 with artificial sea water. Using this optimum medium, lipase activity and cell concentration were increased by 3.54- and 1.31-fold over that of the basal medium, respectively. This lipase showed tolerance to high salinity, pH and temperature. About 10–20% methanol exhibited a stimulatory effect on the lipase activity, while activity was inhibited by 30–40% methanol, 2-propanol, DMSO, and ethanol. This study provides a valuable resource for marine lipase production and extends our understanding of the possible role of sponge-associated bacteria in the biotransformation of chemical compounds for the sponge host.  相似文献   

20.
Secondary metabolites, particularly bioactive compounds, from probiotic bacteria, are good candidates for replacing antibiotics to which bacteria have become resistant. In order to compare bioactive crude material from strain SA14 of Brevibacillus laterosporus with two antibiotics, the MICs of this bioactive crude and those of antibiotics vancomycin and oxacillin, against methicillin-resistant Staphylococcus aureus (MRSA), were determined. The result indicated that the MIC (3.6–19.2 μg/ml) of bioactive crude was higher than vancomycin (MIC = 1.28–2.56 μg/ml) when tested against MRSA. Interestingly, all tested strains of MRSA were susceptible to bioactive crude and were approximately 5.2-fold more potent than oxacillin (MIC > 100 μg/ml). Its activity against MRSA gives support for further evaluation, and the development of this substance for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号