首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, we fabricated highly aligned electrospun poly(ε-caprolactone)(PCL)/collagen biocomposites, which were consisted of multi-layered structure. The aligned directions of the composites were controlled with two rotating collectors, and various weight fractions (1, 2, 3 wt%) of collagen were embedded between the mat of PCL microfibers to improve the mechanical property and biological activities of osteoblast-like cells (MG63). The PCL/collagen biocomposite showed nine times of increment in mechanical strength of random PCL/collagen composite. An increase in collagen content in the biocomposites displayed significant increase of mechanical properties, hydrophilic property, water-absorption ability, and even cell viability of osteoblast-like cells (MG63).  相似文献   

2.
Recent molecular modeling data using collagen peptides predicted that mechanical force transmitted through intermolecular cross-links resulted in collagen triple helix unwinding. These simulations further predicted that this unwinding, referred to as triple helical microunfolding, occurred at forces well below canonical collagen damage mechanisms. Based in large part on these data, we hypothesized that mechanical loading of glycation cross-linked tendon microfibers would result in accelerated collagenolytic enzyme damage. This hypothesis is in stark contrast to reports in literature that indicated that individually mechanical loading or cross-linking each retards enzymatic degradation of collagen substrates. Using our Collagen Enzyme Mechano-Kinetic Automated Testing (CEMKAT) System we mechanically loaded collagen-rich tendon microfibers that had been chemically cross-linked with sugar and tested for degrading enzyme susceptibility. Our results indicated that cross-linked fibers were > 5 times more resistant to enzymatic degradation while unloaded but became highly susceptible to enzyme cleavage when they were stretched by an applied mechanical deformation.  相似文献   

3.
The possibility of using wild non-mulberry silk protein as a biopolymer remains unexplored compared to domesticated mulberry silk protein. One of the main reasons for this was for not having any suitable method of extraction of silk protein fibroin from cocoons and silk glands. In this study non-bioengineered non-mulberry silk gland fibroin protein from tropical tasar silkworm Antheraea mylitta, is regenerated and characterized using 1% (w/v) sodium dodecyl sulfate (SDS). The new technique is important and unique because it uses a mild surfactant for fibroin dissolution and is advantageous over other previous reported techniques using chaotropic salts. Fabricated fibroin films are smooth as confirmed by atomic force microscopy. Circular dichroism spectrometry along with Fourier transformed infrared spectroscopy and X-ray diffraction reveal random coil/alpha-helix conformations in regenerated fibroin which transform to beta-sheets, resulting in crystalline structure and protein insolubility through ethanol treatment. Differential scanning calorimetry shows an increase in glass transition (Tg) temperature and enhanced degradation temperature on alcohol treatment. Enhanced cell attachment and viability of AH927 feline fibroblasts were observed on fibroin matrices. Higher mechanical strength along with controllable water stability of regenerated gland fibroin films make non-mulberry Indian tropical tasar silk gland fibroin protein a promising biomaterial for tissue engineering applications.  相似文献   

4.
Regenerated silk fibroin materials show properties dependent on the methods used to process them. The molecular structures of B. mori silk fibroin both in solution and in solid states were studied and compared using X-ray diffraction, FTIR, and (13)C NMR spectroscopy. Some portion of fibroin protein molecules dissolved in formic acid already have a beta-sheet structure, whereas those dissolved in TFA have some helical conformation. Moreover, fibroin molecules were spontaneously assembled into an ordered structure as the acidic solvents were removed from the fibroin-acidic solvent systems. This may be responsible for the improved physical properties of regenerated fibroin materials from acidic solvents. Regenerated fibroin materials have shown poor mechanical properties and brittleness compared to their original form. These problems were technically solved by improving the fiber forming process according to a method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the native silk fiber and their physical and chemical properties were characterized by X-ray diffraction, solid state (13)C NMR spectroscopy, SinTech tensile testing, and SEM.  相似文献   

5.
Silk fibroin is a biocompatible and biodegradable material, which can be used in surgery and tissue engineering. To improve the cell adhesion on fibroin surface, gelatin can be added to the items made of fibroin. This work compares the mechanical properties of films and three-dimensional scaffolds made of fibroin and fibroin with gelatin. The addition of 30% gelatin to the fibroin scaffold does not change its microstructure or swelling. The addition of gelatin decreases the mechanical properties of films (decreases the Young’s modulus, the maximum strain and elongation) but increases the shear modulus of the scaffolds.  相似文献   

6.
Crosslinking treatment of collagen has often been used to improve the biological stability and mechanical properties of 3D porous collagen scaffolds. However, accompanying these improvements, the collagen fibril surface becomes hydrophobic nature resulting in a reduced surface wettability. The wetting of the collagen fibril by culture medium is reduced and it is difficult for the medium to diffuse into the 3D structure of a porous collagen scaffold. This paper reports a “perfusion processing” strategy using ozone to improve the surface wettability of chemical crosslinked collagen scaffolds. Surface wettability, surface composition and biological stability were analyzed to evaluate the effectiveness of this surface processing strategy. It was observed that ozone perfusion processing improved surface wettability for both exterior and interior surfaces of the porous 3D collagen scaffold. The improvement in wettability is attributed to the incorporation of oxygen-containing functional groups onto the surface of the collagen fibrils, as confirmed by X-ray Photoelectron Spectroscopy (XPS) analysis. This leads to a significant improvement in water taking capability without compromising the bulk biological stability and mechanical properties, and confirms that ozone perfusion processing is an effective tool to modify the wettability both for interior and exterior surfaces throughout the scaffold.  相似文献   

7.
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross‐links, and generating double network hydrogels consisting of chemical and physical cross‐links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1–5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross‐links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross‐linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom‐up assembly of biological tissues and for broader biomaterial applications.  相似文献   

8.
Assembly of collagen into microribbons: effects of pH and electrolytes   总被引:3,自引:0,他引:3  
Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.  相似文献   

9.
Electrospun nanofibrous scaffolds varying different materials are fabricated for tissue engineering. PLGA, silk fibroin, and collagen-derived scaffolds have been proved on good biocompatibility with neurons. However, no systematic studies have been performed to examine the PLGA-silk fibroin-collagen (PLGA-SF-COL) biocomposite fiber matrices for nerve tissue engineering. In this study, different weight ratio PLGA-SF-COL (50:25:25, 30:35:35) scaffolds were produced via electrospinning. The physical and mechanical properties were tested. The average fiber diameter ranged from 280 + 26 to 168 + 21 nm with high porosity and hydrophilicity; the tensile strength was 1.76 ± 0.32 and 1.25 ± 0.20 Mpa, respectively. The results demonstrated that electrospinning polymer blending is a simple and effective approach for fabricating novel biocomposite nanofibrous scaffolds. The properties of the scaffolds can be strongly influenced by the concentration of collagen and silk fibroin in the biocomposite. To assay the cytocompatibility, Schwann cells were seeded on the scaffolds; cell attachment, growth morphology, and proliferation were studied. SEM and MTT results confirmed that PLGA-SF-COL scaffolds particularly the one that contains 50% PLGA, 25% silk fibroin, and 25% collagen is more suitable for nerve tissue engineering compared to PLGA nanofibrous scaffolds.  相似文献   

10.
New process to form a silk fibroin porous 3-D structure   总被引:1,自引:0,他引:1  
Tamada Y 《Biomacromolecules》2005,6(6):3100-3106
A new process to form fibroin spongy porous 3-D structure is reported herein. The process involves freezing and thawing fibroin aqueous solution in the presence of a small amount of an organic solvent. The process requires no freeze-drying, chemical cross-linking, or the aid of other polymeric materials. The solvent concentration, fibroin concentration, freezing temperature, and freezing duration affect the sponge formation, its porous structure, and its mechanical properties. Measurements by XRD and FTIR indicate that silk I and silk II crystalline structures exist in the fibroin sponge and that the secondary structure of fibroin is transformed to a beta-sheet from a random coil during this process. The tensile strength decreased slightly, but the fibroin sponge showed no deformation after autoclaving. Therefore, the fibroin sponge was sterilized using an autoclave. For 3 weeks, MC3T3 cells proliferated in the sterilized fibroin sponge. The fibroin sponge formed by this new process is applicable as a tissue-engineering scaffold because it is formed from biocompatible pure silk fibroin and offers both porous structure and mechanical properties that are suitable for cell growth and handling.  相似文献   

11.
Collagen, silk, and elastin are the fibrous proteins consist of representative amino acid repeats. Because these proteins exhibited distinguishing mechanical properties, they have been utilized in diverse applications, such as fiber‐based sensors, filtration membranes, supporting materials, and tissue engineering scaffolds. Despite their infinite prevalence and potential, most studies have only focused on a few repeat proteins. In this work, the hypothetical protein with a repeat motif derived from the frog Xenopus tropicalis was obtained and characterized for its potential as a novel protein‐based material. The codon‐optimized recombinant frog repeat protein, referred to as ‘xetro’, was produced at a high rate in a bacterial system, and an acid extraction‐based purified xetro protein was successfully fabricated into microfibers and nanofibers using wet spinning and electrospinning, respectively. Specifically, the wet‐spun xetro microfibers demonstrated about 2‐ and 1.5‐fold higher tensile strength compared with synthetic polymer polylactic acid and cross‐linked collagen, respectively. In addition, the wet‐spun xetro microfibers showed about sevenfold greater stiffness than collagen. Therefore, the mass production potential and greater mechanical properties of the xetro fiber may result in these fibers becoming a new promising fiber‐based material for biomedical engineering. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 659–664, 2015.  相似文献   

12.
Development of suitable antimicrobial biomaterials for hygienic wound dressing and healing is an important requirement for medical application. Durable mechanical properties increase the application range of biomaterial in different environmental and biological conditions. Due to the inherent brittleness of silk fibroin (SF), polyurethane fiber (PUF) was used to modify SF containing actinomycin X2 (Ac.X2) to prepare silk fibroin@actinomycin X2/polyurethane fiber (ASF/PUF) blend membranes. The ASF/PUF blend membrane was developed by solution casting method. Incorporation of PUF improved the flexibility of material and introduction of Ac.X2 has increased antibacterial activity of materials. Excellent mechanical properties (tensile strength up to 25.7 MPa and elongation at break up to 946.5 %) of 50 % SF+50 % PUF blend membrane were proved by tensile testing machine. FT-IR spectra, TGA, contact angle and DMA were tested to prove the blend membrane's physico-chemical characteristics. ASF/PUF blend membrane displayed satisfactory antibacterial activity against S. aureus, and the cytotoxicity tests showed that the blend membrane has better biosafety compared to directly applied Ac.X2 in soluble form. These results suggest that the modification of SF through PUF for development of flexible antibacterial membranes has great potential application value in the field of silk-like material fabrication.  相似文献   

13.
The insufficient load-bearing capacity of today’s tissue-engineered (TE) cartilage limits its clinical application. Focus has been on engineering cartilage with enhanced mechanical stiffness by reproducing native biochemical compositions. More recently, depth dependency of the biochemical content and the collagen network architecture has gained interest. However, it is unknown whether the mechanical performance of TE cartilage would benefit more from higher content of biochemical compositions or from achieving an appropriate collagen organization. Furthermore, the relative synthesis rate of collagen and proteoglycans during the TE process may affect implant performance. Such insights would assist tissue engineers to focus on those aspects that are most important. The aim of the present study is therefore to elucidate the relative importance of implant ground substance stiffness, collagen content, and collagen architecture of the implant, as well as the synthesis rate of the biochemical constituents for the post-implantation mechanical behavior of the implant. We approach this by computing the post-implantation mechanical conditions using a composition-based fibril-reinforced poro-viscoelastic swelling model of the medial tibia plateau. Results show that adverse implant composition and ultrastructure may lead to post-implantation excessive mechanical loads, with collagen orientation being the most critical variable. In addition, we predict that a faster synthesis rate of proteoglycans compared to that of collagen during TE culture may result in excessive loads on collagen fibers post-implantation. This indicates that even with similar final contents, constructs may behave differently depending on their development. Considering these aspects may help to engineer TE cartilage implants with improved survival rates.  相似文献   

14.
为了进一步提高伤口敷料的止血性能,文中在生物相容性良好的壳聚糖溶液中引入含有多种生长因子的人源性富血小板血浆(Humanplatelet-richplasma,hPRP),并加入不同体积比例(1∶1、1∶3、3∶1、1∶0)的丝素蛋白溶液以提高材料的多孔性与止血性,通过冷冻干燥法制备不同配比的hPRP-壳聚糖/丝素蛋白敷料,并将纯壳聚糖敷料作为对照组,研究hPRP和丝素蛋白对敷料的止血性能的影响以及丝素蛋白对PRP中生长因子控制释放的影响。结果表明,在壳聚糖敷料中引入hPRP对敷料的止血性有所提高,但对敷料的多孔结构及吸水率无明显改善,若在hPRP-壳聚糖溶液中按照体积比为1∶1的比例加入丝素蛋白溶液,会得到具有较为均匀的多孔结构的敷料,敷料的孔隙率与吸水率分别可达到86.83%±3.84%与1 474%±114%,且该比例的敷料在快速止血性能上表现优异。此外,加入丝素蛋白与壳聚糖比例为1∶1的PRP敷料能有效减少PRP中生长因子在初始阶段的爆裂释放。因此,含hPRP的壳聚糖/丝素蛋白复合敷料有望成为一种能快速止血且能促进伤口愈合的新型伤口敷料。  相似文献   

15.
This paper describes the synthesis and characterization of new regenerated silk fibroin (SF)/nano-TiO(2) composite films. The preparation method, based on the sol-gel technique using butyl titanate as oxide precursor, could avoid reagglomeration of the prepared nanoparticles. Samples were characterized mainly by X-ray diffraction (XRD), ultra-violet (UV) spectroscopy, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The UV and AFM results indicated that TiO(2) nanoparticles could be well dispersed inside the SF film, and the size of TiO(2) was about 80nm. The XRD and FT-IR analysis implied that the formation of nano-TiO(2) particles may induce the conformational transition of silk fibroin to a typical Silk II structure partly with the increasing of crystallinity in the composite films. Compared to the pure SF films, the mechanical and thermal properties of composite films were improved, and the solubility in water was decreased due to the conformational transition of silk fibroin to Silk II structure.  相似文献   

16.
Silk has a long history of use in medicine as sutures. To address the requirements of a mechanically robust and biocompatible material, basic research to clarify the role of repeated sequences in silk fibroin in its structures and properties seems important as well as the development of a processing technique suitable for the preparation of fibers with excellent mechanical properties. In this study, three silk-like protein analogs were constructed from two regions selected from among the crystalline region of Bombyx mori silk fibroin, (GAGSGA)(2), the crystalline region of Samia cynthia ricini silk fibroin, (Ala)(12), the crystalline region of spider dragline silk fibroin, (Ala)(6), and the Gly-rich region of spider silk fibroin, (GGA)(4). The silk-like protein analog constructed from the crystalline regions of the spider dragline silk and B. mori silk fibroins, (A(6)SCS)(8), that constructed from the crystalline regions of the S. c.ricini and B. mori silk fibroins, (A(12)SGS)(4), that constructed from and the crystalline region of S. c.ricini silk fibroin and the glycine-rich region of spider dragline silk fibroin, (A(12)SGS)(4),were expressed their molecular weights being about 36.0 kDa, 17.0 kDa and 17.5 kDa, respectively in E. coli by means of genetic engineering technologies. (A(12)SCS)(4) and (A(12)SGS)(4 )undergo a structural transition from alpha-helix to beta-sheet on a change in the solvent treatment from trifluoroacetic acid (TFA) to formic acid (FA). However, (A(6)SCS)(8) takes on the beta-sheet structure predominantly on TFA treatment and FA treatment. Structural analysis was performed on model peptides selected from spider dragline and S. c.ricini silks by means of (13)C CP/MAS NMR.  相似文献   

17.
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.  相似文献   

18.
目的:磷酸钙骨水泥(Calcium phosphate cement,CPC)以其诸多优点正得到了越来越多的应用,但其较差的力学性能表现也限制了它的使用范围。本研究目的在于改善磷酸钙骨水泥的力学性能,同时评估改性后的磷酸钙骨水泥的其他性能。方法:通过丝素蛋白(Silk fibroin,SF)的矿化自组装方法制备丝素蛋白/羟基磷灰石复合物(silk fibroin/hydroxyapitite composite, SF/HA)。按照1%、2%、3%、4%的质量分数加入磷酸钙骨水泥中,与磷酸钙骨水泥组对比。比较内容包括力学强度、抗渍散性能及细胞毒性。结果:以丝素蛋白溶液为液相组的磷酸钙骨水泥强度大约为35MPa。随后随着添加丝素蛋白/羟基磷灰石复合物的质量分数从1%增至3%,磷酸钙骨水泥的强度逐渐增加(P〈0.05),最高约至45MPa。而当丝素蛋白/羟基磷灰石的质量分数达到4%时,磷酸钙骨水泥的强度较质量分数3%组小幅度下降至43MPa(P〈0.05)。以丝素蛋白溶液作为液相时,磷酸钙骨水泥的抗溃散能力也得到了加强。在MTT法测定细胞活力的对照实验中,无论是加入丝素蛋白溶液或丝素蛋白/羟基磷灰石复合物,都未观察到细胞毒性。结论:在磷酸钙骨水泥中加入3%质量分数的丝素蛋白/羟基磷灰石复合物,能显著提高磷酸钙骨水泥的抗压强度。而丝素蛋白溶液作为液相可改善磷酸钙骨水泥的抗溃散能力。同时,丝素蛋白和丝素蛋白/羟基磷灰石复合物都不表现出细胞毒性。更理想的力学强度和更强的抗溃散能力,大大扩展了磷酸钙骨水泥的应用范围。  相似文献   

19.
A common problem in the design of tissue engineered scaffolds using electrospun scaffolds is the poor cellular infiltration into the structure. To tackle this issue, three approaches to scaffold design using electrospinning were investigated: selective leaching of a water-soluble fiber phase (poly ethylene oxide (PEO) or gelatin), the use of micron-sized fibers as the scaffold, and a combination of micron-sized fibers with codeposition of a hyaluronic acid-derivative hydrogel, Heprasil. These designs were achieved by modifying a conventional electrospinning system with two charged capillaries and a rotating mandrel collector. Three types of scaffolds were fabricated: medical grade poly(epsilon-caprolactone)/collagen (mPCL/Col) cospun with PEO or gelatin, mPCL/Col meshes with micron-sized fibers, and mPCL/Col microfibers cosprayed with Heprasil. All three scaffold types supported attachment and proliferation of human fetal osteoblasts. However, selective leaching only marginally improved cellular infiltration when compared to meshes obtained by conventional electrospinning. Better cell penetration was seen in mPCL/Col microfibers, and this effect was more pronounced when Heprasil regions were present in the structure. Thus, such techniques could be further exploited for the design of cell permeable fibrous meshes for tissue engineering applications.  相似文献   

20.
In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze‐drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号