首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and Aims In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica.Methods A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis.Key Results The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems.Conclusions Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.  相似文献   

2.
BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.  相似文献   

3.
A study was made, in a cool-temperate zone, of the extent of cell division in the cambium, the extent of differentiation of cambial derivatives, and the localization of storage starch around the cambium in locally heated (22–26°C) stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters during cambial dormancy and immediately after natural reactivation of the cambium. In locally heated regions of stems during cambial dormancy, heating induced localized reactivation of the cambium. However, the cells in the heated and reactivated cambium stopped dividing soon after only a few cells had been generated. In addition, no differentiation of the xylem and the disappearance of starch from storage tissues around the cambium were observed. In regions of stem that had been locally heated after natural reactivation of the cambium, cell division continued in the cambium and earlywood tracheids with a large radial diameter and secondary walls were formed, with abundant starch in the storage tissues around the cambium. Our results suggest that the extent of both cell division in the cambium and cell differentiation depends on the amount of starch in storage tissues around the cambium in the locally heated stems of an evergreen conifer growing in a cool-temperate zone.  相似文献   

4.

Key message

We observed the formation of latewood tracheids with narrow diameters and thick walls and the disappearance of stored starch around the cambium on the locally heated region of stems in evergreen conifer Chamaecyparis pisifera during winter cambial dormancy.

Abstract

Wood formation is controlled by cambial cell division, which determines the quantity and quality of wood. We investigated the factors that control cambial activity and the formation of new tracheids in locally heated stems of the evergreen conifer Chamaecyparis pisifera. Electric heating tape was wrapped around one side of the stem, at breast height, of two trees in 2013 and two in 2014. Pairs of stems were locally heated in winter, and small blocks were collected from heated and non-heated regions of stems. Cambial activity and levels of stored starch around the cambium were investigated by microscopy. Cambial reactivation and xylem differentiation occurred earlier in heated than in non-heated regions. New cell plates were formed after 14–18 days of heating. After a few layers of tracheids with large diameters and thin walls had formed, cell division and cell enlargement during differentiation were inhibited. Tracheids with narrow diameters and thick walls, defining those as latewood, were formed near the cambium, and finally, four to six layers of tracheids were induced. After cambial reactivation, amounts of stored starch started to decrease and starch disappeared completely from phloem and xylem cells that were located near the cambium during the differentiation of heated regions. Our results suggest that an increase in temperature induces the conversion of stored starch to soluble sugars for continuous cambial cell division and earlywood formation. By contrast, a shortage of stored starch might be responsible for inhibition of cambial activity and induction of the formation of latewood tracheids.
  相似文献   

5.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

6.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

7.
Differences in the timing of cambial reactivation and the initiation of xylem differentiation in response to the sum of daily maximum temperatures were studied in two Cryptomeria japonica trees with cambium of different ages under natural and locally heated conditions. In addition, we observed the effects of low temperature on cambial activity. The timing of cambial reactivation and of the initiation of xylem differentiation differed between 55- and 80-year-old cambium under natural conditions. In the 55-year-old cambium, cambial reactivation occurred when the cambial reactivation index (CRI), calculated on the basis of daily maximum temperatures in excess of 10°C, was 94 and 97°C in 2007 and 2008, respectively. In 80-year-old cambium, cambial reactivation occurred when the CRI, calculated on the basis of daily maximum temperatures in excess of 11°C, was 69 and 71°C in 2007 and 2008, respectively. After cambial reactivation in 2007, normal cell division was evident in the cambium even though the minimum temperature had fallen between −2 and −3°C. Under natural conditions, xylem differentiation started 38–44 days after cambial reactivation. In heated stems, the time between cambial reactivation and the initiation of xylem differentiation ranged from 14 to 16 days, a much shorter time than under natural conditions, indicating that continuous exposure to an elevated temperature had induced earlier xylem differentiation. Our observations indicate that the sensitivity to reactivation inducing stimuli of the cambium depends on both the stage of dormancy and tree age of the cambium.  相似文献   

8.
Oribe Y  Funada R  Shibagaki M  Kubo T 《Planta》2001,212(5-6):684-691
A study was made of cambial activity, the localization of storage starch around the cambium, and the localization and occurrence of microtubules in cambial cells from dormancy to reactivation in locally heated (22–26 °C) stems of the evergreen conifer Abies sachalinensis. Heating induced localized reactivation of the cambium in the heated portions of the stem. Erect ray cambial cells resumed cell division 1 d prior to the reactivation of fusiform cambial cells and procumbent ray cambial cells. The re-initiation of the division of fusiform cambial cells occurred first on the phloem side. During the heat treatment, the amount of storage starch decreased in procumbent ray cambial cells and in the phloem parenchyma adjacent to the cambium but increased in fusiform cambial cells. Preprophase bands of microtubules, spindle microtubules and phragmoplast microtubules were observed both in erect ray cambial cells and in procumbent ray cambial cells. By contrast, no evidence of the presence of such preprophase bands of microtubules was detected in fusiform cambial cells. The results suggest that the localized heating of stems of evergreen conifers might provide a useful experimental model system for studies of the dynamics of cambial reactivation in intact trees. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

9.
BACKGROUND AND AIMS The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated. METHODS: A heating experiment (23-25 degrees C) was carried out in spring, before normal reactivation of the cambium, and cooling (9-11 degrees C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees. KEY RESULTS: Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples. CONCLUSIONS: Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.  相似文献   

10.
Effects of environmental factors on wood formation in Scots pine stems   总被引:10,自引:0,他引:10  
Summary To find the optimal conditions for growth and development of tracheid walls in Scots pine stems the effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening have been studied. The observations were carried out on 10 specially chosen 50 to 60-year-old trees, growing in central Siberia, over 2 seasons. The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumens were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross sectional areas of tracheid walls. The mean day, mean maximal diurnal and mean minimal nocturnal temperatures have been shown by correlation and regression analyses to affect differentially separate stages of cytogenesis. The temperature influenced the initial division the side of xylem and radial cell expansion mainly in May–June, while the influence of precipitation increased in July–August. Throughout all seasons it was the temperature that had the main influence on the biomass accumulation in cell walls. Optimal values of temperature and precipitation for cell production by cambium, radial cell expansion and secondary wall thickening have been calculated. The data are discussed in connection with productivity and quality of wood.  相似文献   

11.
 Effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening in larch stems have been studied. The observations were carried out over two seasons on ten 50- to 60-year-old trees, growing in central Siberia and chosen according to growth rate (the number of cells in radial rows of each of two of the preceding seasons was equal). The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumina were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross-sectional areas of tracheid walls. The mean day air temperature, mean maximum diurnal and mean minimum nocturnal temperatures as well as precipitation have been shown by correlation and regression analyses to affect differentially separate stages of tracheid differentiation. Throughout all the seasons it was temperature that had the main influence on the initial divisions in the xylem, radial cell expansion and biomass accumulation. However, the levels of such an effect on separate stages of cytogenesis were different, especially the influence of nocturnal temperature on xylem cell production by cambium and primary wall growth. The optimum values of temperature and precipitation for cell production by cambium, for radial cell expansion and secondary wall thickening have been calculated. These optimum values of the first and second processes proved to be practically equal, while the last differs considerably in response to temperature. The data are discussed in connection with formation of early and late tracheids. Received: 3 July 1996 / Accepted: 7 February 1997  相似文献   

12.
To manipulate the occurrence of latewood formation and cambial dormancy in Picea abies (L.) Karst. stems, potted seedlings were transferred from the natural environment on 9 July, when tracheids early in the transition between earlywood and latewood were being produced, and cultured for up to 5 weeks in a controlled environment chamber having: (1) Warm LD, (25/15C during day/night) and long (16 h) photoperiod, (2) Warm SD, (25/15C) and short (8 h) photoperiod, or (3) Cold SD, (18/8°C) and short (8 h) photoperiod. In Warm LD trees, the radial enlargement of primary-walled derivatives on the xylem side of the cambium, as well as xylem production, continued at the same magnitude throughout the experiment. In Warm SD and Cold SD trees, the radial enlargement of primary-walled derivatives declined and the cambium entered dormancy, both developments occurring faster in the Warm SD trees. The concentrations of indole-3-acetic acid (IAA) was higher in developing xylem tissue than in cambium+phloem tissues, but did not vary with environmental treatment or decrease during the experimental period. The O2 concentration in the cambial region followed the order of Cold SD>Warm SD>Warm LD trees and was <5%, the threshold for the inhibition of IAA-induced proton secretion, for the first 3 weeks in Warm SD and Warm LD trees. Thus, neither latewood formation nor cambial dormancy can be attributed to decreased IAA in the cambial region. Nor does lower O2 concentration in the cambial region appear to be inhibiting the IAA action that is associated with cambial growth.  相似文献   

13.
BACKGROUND AND AIMS: The differentiation of terminal latewood tracheids of silver fir (Abies alba) trees grown in Slovenia was investigated in autumn/winter 2001/2002. METHODS: The experimental trees were divided into three groups: one with narrow annual rings, width less than 1 mm; one with annual ring widths between 1 and 4 mm; and one group with broad rings larger than 4 mm. The differentiation of terminal latewood tracheids was investigated by light-, electron- and UV-microscopy in tissues sampled in October and November 2001 and March 2002. KEY RESULTS: In the middle of October, cambial divisions did not occur any more in any of the trees. In trees with narrow annual rings, cell wall deposition as well as lignification were completed in terminal latewood tracheids at this date, whereas in trees with annual ring widths of more than 1 mm these processes still continued. Electron microscopy as well as UV microscopy revealed an unlignified inner S(2) layer and the absence of S(3) and warty layers. With increasing distance from the cambium, wall formation and lignification gradually appeared to be completed. Samples of all trees taken in the middle of November only contained differentiated terminal latewood tracheids. At the structural and lignin topochemical level, November and March samples showed completed differentiation of walls of terminal latewood tracheids. CONCLUSIONS: In trees with broader annual rings, the final steps of differentiation of the youngest latewood tracheids near the cambium still continued during autumn, but were finished prior to winter. It was concluded from structural observations that duration of cambial activity is longer in trees with broad annual rings than in trees with narrow rings.  相似文献   

14.
In sterile-cultured explants of stems of the pine Pinus contorta Dougl., fusiform cambial cells differentiated entirely into axial parenchyma cells when exogenous indol-3yl-acetic acid (IAA) was omitted. The normal appearance of the cambial zone was maintained when IAA was included in the medium. The IAA-maintained stability of cambial structure suggests physiological rather than epigenetic control over vascular cambium structure. IAA was essential for the occurrence of callus growth in stem explants. Callus growth was similar in appearance and extent in winter- and summer-explanted material. Tracheids differentiated in explants only when actively differentiating tracheids were already present at the moment of explanting, suggesting the absence of factors necessary for tracheid differentiation in over-wintering tissues. Sclereid differentiation, which normally does not occur in phloem or xylem development in P. contorta, occurred in callus derived from active cambial explants. The sclereids were identical to sclereids which differentiated in pith of intact stems. The possibility that sclereid and tracheid differentiation may be fundamentally similar types of gene expression is discussed. Growth of P. contorta trees in continuous darkness resulted in extensive compression-wood tracheid differentiation in the upright main stem. Normal-wood tracheids differentiated in similar trees grown in light. More tracheids differentiated in light than in darkness. This apparently is the first report of induction of compression-wood tracheid differentiation in the absence of hormone treatment or tilting of trees. Different types and numbers of tracheids differentiated at different position in two-year-old disbudded defoliated stem cuttings of P. contorta in response to apically supplied IAA. No evidence for new tracheid differentiation was seen in control cuttings; however, the results suggest that neither cambial cell division nor tracheid differentiation were actually initiated by IAA. Directed transport of additional regulatory factors toward areas of high IAA concentration is formulated as a hypothesis to explain these observations. Gibberellic acid, (S)-abscisic acid and IAA inhibited tracheid differentiation when individually supplied to basal ends of P. contorta cuttings predisposed to differentiate new tracheids. Experiments with single intact needles on Pinus cembroides var. monophylla cuttings confirmed a previous interpretation that the mature pine needle, rather than the short-shoot apical meristem at its base, promotes tracheid differentiation in the stem.  相似文献   

15.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   

16.
 The relationship between the cessation of cell expansion and formation of the secondary wall was investigated in the early-wood tracheids of Abies sachalinensis Masters by image analysis and field emission scanning electron microscopy. The area of the lumen and the length of the perimeter of the lumen of differentiating tracheids increased from the cambium towards the xylem. These increases had just ceased in the case of tracheids closest to the cambium in which birefringence was first detected by observations with a polarizing light microscope. Cellulose microfibrils (MFs) deposited on the innermost surfaces of radial walls were not well ordered during the expansion of cells, but well ordered MFs were deposited at the subsequent stage of cell wall formation. The first well ordered MFs were oriented in an S-helix. The well ordered MFs had already been deposited at the tracheids where birefringence was first detected under the polarizing light microscope. These results indicate that the deposition of the well ordered MFs, namely, the formation of the secondary wall, begins before the cessation of cell expansion of tracheids. Therefore, it seems that the expansion of tracheids is restricted by the deposition of the secondary wall because the cell walls become rigid simultaneously with the development of the secondary wall and, therefore, the yield point of cell walls exceeds the turgor pressure of the cell. Received: 3 July 1996 / Accepted: 24 September 1996  相似文献   

17.

Background and Aims

The networks of vessel elements play a vital role in the transport of water from roots to leaves, and the continuous formation of earlywood vessels is crucial for the growth of ring-porous hardwoods. The differentiation of earlywood vessels is controlled by external and internal factors. The present study was designed to identify the limiting factors in the induction of cambial reactivation and the differentiation of earlywood vessels, using localized heating and disbudding of dormant stems of seedlings of a deciduous ring-porous hardwood, Quercus serrata.

Methods

Localized heating was achieved by wrapping an electric heating ribbon around stems. Disbudding involved removal of all buds. Three treatments were initiated on 1 February 2012, namely heating, disbudding and a combination of heating and disbudding, with untreated dormant stems as controls. Cambial reactivation and differentiation of vessel elements were monitored by light and polarized-light microscopy, and the growth of buds was followed.

Key Results

Cambial reactivation and differentiation of vessel elements occurred sooner in heated seedlings than in non-heated seedlings before bud break. The combination of heating and disbudding of seedlings also resulted in earlier cambial reactivation and differentiation of first vessel elements than in non-heated seedlings. A few narrow vessel elements were formed during heating after disbudding, while many large earlywood vessel elements were formed in heated seedlings with buds.

Conclusions

The results suggested that, in seedlings of the deciduous ring-porous hardwood Quercus serrata, elevated temperature was a direct trigger for cambial reactivation and differentiation of first vessel elements. Bud growth was not essential for cambial reactivation and differentiation of first vessel elements, but might be important for the continuous formation of wide vessel elements.  相似文献   

18.
Elucidation of the role of endogenous cytokinins in cambial activity and wood formation requires knowledge of their identity and concentrations in the cambial region. Here, we have used capillary liquid chromatography/frit-FAB mass spectrometry to identify endogenous cytokinins in the vascular cambial region of mature Pinus sylvestris (L.) trees. Full-scan mass spectra were obtained for isopentenyladenine, isopentenyladenosine, zeatin riboside, dihydrozeatin and dihydrozeatin riboside. Of these, isopentenyladenine, dihydrozeatin and dihydrozeatin riboside are demonstrated by rigorous physico chemical methods for the first time in a conifer. In addition, an adenine glycoside was found for the first time in a plant. The identified cytokinins were quantified in active and dormant cambial region tissues by isotope dilution techniques using the appropriate deuterated isotope for each cytokinin species. The concentration of the detected cytokinins ranged between 1.3 and 5.5 pmol g-1 fresh weight, and did not vary greatly between dormant tissues, and in tissues actively dividing and differentiating. This observation indicates that cessation and reactivation of cell division activity in the vascular cambium is controlled by factors other than cytokinin availability.  相似文献   

19.
Abstract. Gas chromatography – selected ion monitoring – mass spectrometry was used to measure the level of indole-3-acetic acid (IAA) in the cambial region at the top and bottom of the branchless portion of the main stem of three large Scots pine trees, at weekly intervals from 28 April to 13 July. During this period, the cambium reactivated from the dormant state and entered its 'grand' period of xylem and phloem production, which was monitored by microscopy. The total amount of IAA (ng cm−2) increased steadily from 28 April until late June, and thereafter remained constant. In contrast, the concentration of IAA (ng g−1 fresh weight) was high at the start of cambial reactivation, declined when the number of differentiating tracheids began to increase, and then rose as the number of cells decreased. The timing and magnitude of the changes in xylem and phloem production and in IAA level were similar at the two sampling positions. It is concluded that the seasonal changes in cambial activity in the conifer stem cannot be ascribed simply to a fluctuation in the level of endogenous IAA in the cambial region.  相似文献   

20.
The cambium dynamics and wood formation of Oriental beech (Fagus orientalis Lipsky) was investigated during the 2008 growing season in the Nowshahr Hyrcanian forest, Iran (36°N, 51°E). Three study sites were selected along an altitudinal gradient (650, 1,100 and 1,600 m a.s.l.), and cambial activity rates of cell formation and cell maturation were studied on micro-cores collected in intervals of 10–20 days. The cambium reactivation of the low-altitude (L) and mid-altitude (M) trees occurred contemporaneously in late March, and also the consecutive phases of cell differentiation took place almost at the same time; however, the entry into cambial dormancy varied considerably from late August to mid-November. Due to lower temperature, the upper-altitude (U) trees showed a 10-day delay in their cambium reactivation, an earlier entry into cambium dormancy (mid-September) and a slower growth rate resulting in narrower tree rings. Despite these differences, the daily increment rates of the trees at all sites reached maximum values coincidently in the early June. Since the photoperiod is the only common external factor among different sites, it is concluded that the timing of the highest growth rate is controlled by the photoperiod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号