首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The limits of promiscuity: isoform-specific dimerization of filamins   总被引:3,自引:0,他引:3  
Filamins are a family of actin cross-linking proteins that are primarily localized in the cortical cytoplasm of all mammalian cells. Until now, three major isoforms (filamins a, b, and c) have been identified, that were shown to be differentially expressed and/or localized in different tissues. An amino-terminal double CH-domain actin binding domain, and a dimerization region in the carboxy-terminal portion of the protein are the molecular basis for its actin cross-linking activity. Chemical cross-linking of bacterially expressed recombinant proteins was used to demonstrate that in all three filamin isoforms the most carboxy-terminally situated immunoglobulinlike domain is required and sufficient for dimerization. The efficiency of the dimerization was increased upon inclusion of the preceding hinge 2 region, indicating a function for this region in the regulation of dimerization. By mixing recombinant proteins derived from different filamin isoforms, we found that heterodimer formation is possible between filamins b and c but not between filamin a and the other two filamins. This selectivity of dimerization might provide a further molecular explanation for the differential intracellular sorting of filamin isoforms and their distinct properties.  相似文献   

3.
The expression of MLCK- and PEVK-domains of twitchin, as well as the unique N-terminal domain of myorod in early development of the mussel Mytilus trossulus has been studied. The MLCK-domain of twitchin and the unique N-terminal domain of myorod appear at the early stages of development, whereas the PEVK-domain of twitchin is present only in muscles of adult mussel. The sizes of genes of the N-terminal domain of myorod, obtained at the blastula stage and from the adult animal are similar, but the proteins have significant differences in the amino acid sequences. Consequently, myorod and twitchin appear at early stages of larval mussels before the formation of "adult" muscles capable of catch contraction, and at these stages both proteins are isoforms, which differ from the isoforms of adult animals. It is possible that the MLCK-domain in the "larval" isoform of twitchin is necessary for regulating the formation of the contractile apparatus of molluscan smooth muscles, while the PEVK-domain is important for the regulation of the catch state in muscles of adult animals.  相似文献   

4.
Immunoglobulin-like (Ig) domains are a widely expanded superfamily that act as interaction motifs or as structural spacers in multidomain proteins. Vertebrate filamins (FLNs), which are multifunctional actin-binding proteins, consist of 24 Ig domains. We have recently discovered that in the C-terminal rod 2 region of FLN, Ig domains interact with each other forming functional domain pairs, where the interaction with signaling and transmembrane proteins is mechanically regulated by weak actomyosin contraction forces. Here, we investigated if there are similar inter-domain interactions around domain 4 in the N-terminal rod 1 region of FLN. Protein crystal structures revealed a new type of domain organization between domains 3, 4, and 5. In this module, domains 4 and 5 interact rather tightly, whereas domain 3 has a partially flexible interface with domain 4. NMR peptide titration experiments showed that within the three-domain module, domain 4 is capable for interaction with a peptide derived from platelet glycoprotein Ib. Crystal structures of FLN domains 4 and 5 in complex with the peptide revealed a typical β sheet augmentation interaction observed for many FLN ligands. Domain 5 was found to stabilize domain 4, and this could provide a mechanism for the regulation of domain 4 interactions.  相似文献   

5.
Human filamins are 280-kDa proteins containing an N-terminal actin-binding domain followed by 24 characteristic repeats. They also interact with a number of other cellular proteins. All of those identified to date, with the exception of actin, bind to the C-terminal third of a filamin. In a yeast two-hybrid search of a human placental library, using as bait repeats 10-18 of filamin B, we isolated a cDNA coding for a novel 374 amino acid protein containing a proline-rich domain near its N terminus and two LIM domains at its C terminus. We term this protein filamin-binding LIM protein-1, FBLP-1. Yeast two-hybrid studies with deletion mutants localized the areas of interaction in FBLP-1 to its N-terminal domain and in filamin B to repeats 10-13. FBLP-1 mRNA was detected in a variety of tissues and cells including platelets and endothelial cells. We also have identified two FBLP-1 variants. Both contain three C-terminal LIM domains, but one lacks the N-terminal proline-rich domain. Transfection of FBLP-1 into 293A cells promoted stress fiber formation, and both FBLP-1 and filamin B localized to stress fibers in the transfected cells. The association between filamin B and FBLP-1 may play a hitherto unknown role in cytoskeletal function, cell adhesion, and cell motility.  相似文献   

6.
The expression of MLCK- and PEVK-domains of twitchin, as well as the unique N-terminal domain of myorod in early development of the mussel Mytilus trossulus has been studied. The MLCK-domain of twitchin and the unique N-terminal domain of myorod appear at the early stages of development, whereas the PEVK-domain of twitchin is present only in muscles of adult mussel. The sizes of genes of the N-terminal domain of myorod, obtained at the blastula stage and from the adult animal are similar, but the proteins have significant differences in the amino acid sequences. Consequently, myorod and twitchin appear at early stages of larval mussels before the formation of “adult” muscles capable of catch contraction, and at these stages both proteins are isoforms, which differ from the isoforms of adult animals. It is possible that the MLCK-domain in the “larval” isoform of twitchin is necessary for regulating the formation of the contractile apparatus of molluscan smooth muscles, while the PEVK-domain is important for the regulation of the catch state in muscles of adult animals.  相似文献   

7.
Filamins are large actin-binding and cross-linking proteins which act as linkers between the cytoskeleton and various signaling proteins. Filamin A (FLNa) is the most abundant of the three filamin isoforms found in humans. FLNa contains an N-terminal actin-binding domain and 24 immunoglobulin-like (Ig) domains. The Ig domains are responsible for the FLNa dimerization and most of the interactions that FLNa has with numerous other proteins. There are several crystal and solution structures from isolated single Ig domains of filamins in the PDB database, but only few from longer constructs. Here, we present nearly complete chemical shift assignments of FLNa tandem Ig domains 16–17 and 18–19. Chemical shift mapping between FLNa tandem Ig domain 16–17 and isolated domain 17 suggests a novel domain–domain interaction mode.  相似文献   

8.
Filamins are important actin cross-linking proteins implicated in scaffolding, membrane stabilization and signal transduction, through interaction with ion channels, receptors and signaling proteins. Here we report the physical and functional interaction between filamins and polycystin-2, a TRP-type cation channel mutated in 10-15% patients with autosomal dominant polycystic kidney disease. Yeast two-hybrid and GST pull-down experiments demonstrated that the C-termini of filamin isoforms A, B and C directly bind to both the intracellular N- and C-termini of polycystin-2. Reciprocal co-immunoprecipitation experiments showed that endogenous polycystin-2 and filamins are in the same complexes in renal epithelial cells and human melanoma A7 cells. We then examined the effect of filamin on polycystin-2 channel function by electrophysiology studies with a lipid bilayer reconstitution system and found that filamin-A substantially inhibits polycystin-2 channel activity. Our study indicates that filamins are important regulators of polycystin-2 channel function, and further links actin cytoskeletal dynamics to the regulation of this channel protein.  相似文献   

9.
Filamin, also called actin binding protein-280, is a dimeric protein that cross-links actin filaments in the cortical cytoplasm. In addition to this ubiquitously expressed isoform (FLN1), a second isoform (ABP-L/gamma-filamin) was recently identified that is highly expressed in mammalian striated muscles. A monoclonal antibody was developed, that enabled us to identify filamin as a Z-disc protein in mammalian striated muscles by immunocytochemistry and immunoelectron microscopy. In addition, filamin was identified as a component of intercalated discs in mammalian cardiac muscle and of myotendinous junctions in skeletal muscle. Northern and Western blots showed that both, ABP-L/gamma-filamin mRNA and protein, are absent from proliferating cultured human skeletal muscle cells. This muscle specific filamin isoform is, however, up-regulated immediately after the induction of differentiation. In cultured myotubes, ABP-L/gamma-filamin localises in Z-discs already at the first stages of Z-disc formation, suggesting that ABP-L/gamma-filamin might play a role in Z-disc assembly.  相似文献   

10.
11.
A link between sites of cell adhesion and the cytoskeleton is essential for regulation of cell shape, motility, and signaling. Migfilin is a recently identified adaptor protein that localizes at cell-cell and cell-extracellular matrix adhesion sites, where it is thought to provide a link to the cytoskeleton by interacting with the actin cross-linking protein filamin. Here we have used x-ray crystallography, NMR spectroscopy, and protein-protein interaction studies to investigate the molecular basis of migfilin binding to filamin. We report that the N-terminal portion of migfilin can bind all three human filamins (FLNa, -b, or -c) and that there are multiple migfilin-binding sites in FLNa. Human filamins are composed of an N-terminal actin-binding domain followed by 24 immunoglobulin-like (IgFLN) domains and we find that migfilin binds preferentially to IgFLNa21 and more weakly to IgFLNa19 and -22. The filamin-binding site in migfilin is localized between Pro(5) and Pro(19) and binds to the CD face of the IgFLNa21 beta-sandwich. This interaction is similar to the previously characterized beta 7 integrin-IgFLNa21 interaction and migfilin and integrin beta tails can compete with one another for binding to IgFLNa21. This suggests that competition between filamin ligands for common binding sites on IgFLN domains may provide a general means of modulating filamin interactions and signaling. In this specific case, displacement of integrin tails from filamin by migfilin may provide a mechanism for switching between different integrin-cytoskeleton linkages.  相似文献   

12.
Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein   总被引:16,自引:0,他引:16  
Mutations in genes encoding for the sarcoglycans, a subset of proteins within the dystrophin-glycoprotein complex, produce a limb-girdle muscular dystrophy phenotype; however, the precise role of this group of proteins in the skeletal muscle is not known. To understand the role of the sarcoglycan complex, we looked for sarcoglycan interacting proteins with the hope of finding novel members of the dystrophin-glycoprotein complex. Using the yeast two-hybrid method, we have identified a skeletal muscle-specific form of filamin, which we term filamin 2 (FLN2), as a gamma- and delta-sarcoglycan interacting protein. In addition, we demonstrate that FLN2 protein localization in limb-girdle muscular dystrophy and Duchenne muscular dystrophy patients and mice is altered when compared with unaffected individuals. Previous studies of filamin family members have determined that these proteins are involved in actin reorganization and signal transduction cascades associated with cell migration, adhesion, differentiation, force transduction, and survival. Specifically, filamin proteins have been found essential in maintaining membrane integrity during force application. The finding that FLN2 interacts with the sarcoglycans introduces new implications for the pathogenesis of muscular dystrophy.  相似文献   

13.
Human filamins are large actin-crosslinking proteins composed of an N-terminal actin-binding domain followed by 24 Ig-like domains (IgFLNs), which interact with numerous transmembrane receptors and cytosolic signaling proteins. Here we report the 2.5 A resolution structure of a three-domain fragment of human filamin A (IgFLNa19-21). The structure reveals an unexpected domain arrangement, with IgFLNa20 partially unfolded bringing IgFLNa21 into close proximity to IgFLNa19. Notably the N-terminus of IgFLNa20 forms a beta-strand that associates with the CD face of IgFLNa21 and occupies the binding site for integrin adhesion receptors. Disruption of this IgFLNa20-IgFLNa21 interaction enhances filamin binding to integrin beta-tails. Structural and functional analysis of other IgFLN domains suggests that auto-inhibition by adjacent IgFLN domains may be a general mechanism controlling filamin-ligand interactions. This can explain the increased integrin binding of filamin splice variants and provides a mechanism by which ligand binding might impact filamin structure.  相似文献   

14.
We determined the full cDNA sequences of chicken gizzard filamin and cgABP260 (chicken gizzard actin-binding protein 260). The primary and secondary structures predicted by these sequences were similar to those of chicken retina filamin and human filamins. Like mammals, chickens have 3 filamin isoforms. Comparison of their amino acid sequences indicated that gizzard filamin, retina filamin, and cgABP260 were the counterparts of human FLNa (filamin a), b, and c, respectively. Antibodies against the actin-binding domain (ABD) of these 3 filamin isoforms were raised in rabbits. Using immunoabsorption and affinity chromatography, we prepared the monospecific antibody against the ABD of each filamin. In immunoblotting, the antibody against the gizzard filamin ABD detected a single band in gizzard, but not in striated muscles or brain. In brain, only the antibody against the retina filamin ABD produced a strong single band. The antibody against the cgABP260 ABD detected a single peptide band in smooth, skeletal, and cardiac muscle. In immunofluorescence microscopy of muscular tissues using these antibodies, the antibody against the gizzard filamin ABD only stained smooth muscle cells, and the antibody against the retina filamin ABD strongly stained endothelial cells of blood vessels and weakly stained cells in connective tissue. The antibody against the cgABP260 ABD stained the Z-lines and myotendinous junctions of breast muscle, the Z-lines and intercalated disks of cardiac muscle, and dense plaques of smooth muscle. These findings indicate that chicken gizzard filamin, retina filamin, and cgABP260 are, respectively, smooth muscle-type, non-muscle-type, and pan-muscle-type filamin isoforms.  相似文献   

15.
The presence of different isoenzymes of phosphatidylinositol 4-kinase in isolated rat liver plasma membranes and their further distribution in plasma membrane domains was examined. Both wortmannin-sensitive and -insensitive PtdIns 4-kinase activities were detected in highly purified plasma membranes obtained by aqueous two-phase affinity partitioning. The wortmannin-sensitive enzyme was identified as the 230 kDa isoform by Western blotting, whereas the 92 kDa isoform was not detected in plasma membranes. The apparent molecular weights of these isoforms were 205 and 105 kDa on SDS polyacrylamide gel electrophoresis, but approximately 500 and 230 kDa respectively on gel filtration, suggesting that both enzymes either are dimers or composed of heterologous subunits. Approximately 25% of the total 230 kDa isoenzyme present in liver, and only ca 5% of the wortmannin-insensitive one, was associated with the plasma membrane fraction. Plasma membrane domains were isolated by a combination of sucrose and Nycodenz gradient centrifugations. The 230 kDa isoform was identified in the blood sinusoidal domain, but not in the bile canalicular one, and was also found in lateral plasma membranes. The wortmannin-insensitive isoenzyme was present only in this latter material. The functional implications of this distribution of PtdIns 4-kinase isoenzymes in plasma membrane regions are discussed.  相似文献   

16.
The role of filamins in actin cross-linking and membrane stabilization is well established, but recently their ability to interact with a variety of transmembrane receptors and signaling proteins has led to speculation of additional roles in scaffolding and signal transduction. Here we report a direct interaction between filamin-A and Kir2.1, an isoform of inwardly rectifying potassium channel expressed in vascular smooth muscle and an important regulator of vascular tone. Yeast two-hybrid screening of a porcine coronary artery cDNA library using the carboxyl terminus of Kir2.1 as bait yielded cDNA encoding a fragment of filamin-A (residues 2481-2647). Interaction between filamin-A and Kir2.1 was confirmed by in vitro overlay assay of membrane-bound Kir2.1 with glutathione S-transferase fusion protein of the isolated filamin clone. Additionally, antibodies directed against Kir2.1 coimmunoprecipitated filamin-A from arterial smooth muscle cell lysates, and immunocytochemical analysis of individual arterial smooth muscle cells showed that Kir2.1 and filamin co-localize in "hotspots" at the cell membrane. Interaction with filamin-A was found to have no effect on Kir2.1 channel behavior but, rather, increased the number of functional channels resident within the membrane. We conclude that filamin-A is potentially an important regulator of Kir2.1 surface expression and location within vascular smooth muscle.  相似文献   

17.
18.
The remodeling of the actin cytoskeleton is essential for cell migration, cell division, and cell morphogenesis. Actin-binding proteins play a pivotal role in reorganizing the actin cytoskeleton in response to signals exchanged between cells. In consequence, actin-binding proteins are increasingly a focus of investigations into effectors of cell signaling and the coordination of cellular behaviors within developmental processes. One of the first actin-binding proteins identified was filamin, or actin-binding protein 280 (ABP280). Filamin is required for cell migration (Cunningham et al. 1992), and mutations in human alpha-filamin (FLN1; Fox et al. 1998) are responsible for impaired migration of cerebral neurons and give rise to periventricular heterotopia, a disorder that leads to epilepsy and vascular disorders, as well as embryonic lethality. We report the identification and characterization of a mutation in Drosophila filamin, the homologue of human alpha-filamin. During oogenesis, filamin is concentrated in the ring canal structures that fortify arrested cleavage furrows and establish cytoplasmic bridges between cells of the germline. The major structural features common to other filamins are conserved in Drosophila filamin. Mutations in Drosophila filamin disrupt actin filament organization and compromise membrane integrity during oocyte development, resulting in female sterility. The genetic and molecular characterization of Drosophila filamin provides the first genetic model system for the analysis of filamin function and regulation during development.  相似文献   

19.
A novel 40 kDa protein was detected in native thin filaments from catch muscles of the mussel Crenomytilus grayanus. The MALDY-TOF analysis of the protein showed a 40% homology with the calponin-like protein from the muscle of Mytilus galloprovincialis (45 kDa), which has a 36% homology with smooth muscle calponin from chicken gizzard (34 kDa). The amount of the calponin-like protein in thin filaments depends on isolation conditions and varies from the complete absence to the presence in amounts comparable with that of tropomyosin. The most significant factor that determines the contact of the protein in thin filaments is the temperature of solution in which thin filaments are sedimented by ultracentrifugation during isolation. At 22 degrees C and optimal values of both pH and ionic strength of the extraction solution, total calponin-like protein coprecipitates with thin filaments. At 2 degrees C it remains in the supernatant. The 40 kDa calponin-like protein from the mussel Crenomytilus grayanus has similar properties with smooth muscle calponin (34 kDa). It is thermostable and inhibits the actin-activated Mg -ATPase activity of actomyosin. In addition, the 40 kDa calponin-like protein isolated without using thermal treatment contains endogenous kinases. It was found that the calponin-like protein can be phosphorylated by endogenous kinases in the Ca -independent manner. These results indicate that the calponin-like protein from the catch muscle of the mussel Crenomytilus grayanus is a new member of the calponin family. The role of proteins from this family both in muscle and ponmuscle cells is still obscure. We suggest that the calponin-like protein is involved in the Ca -independent regulation of smooth muscle contraction.  相似文献   

20.
Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin β3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号