首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The production of aroma compounds during tequila fermentation using four native yeast strains isolated from agave juice was quantified at controlled (35 degrees C) and uncontrolled temperatures (room temperature) by gas chromatography (FID). Three of the four strains were identified as Saccharomyces cerevisiae (MTLI 1, MALI 1 and MGLI 1) and one as Kloeckera apiculata (MALI 2). Among the aroma compounds produced, acetaldehyde has the highest accumulation at the controlled temperature and before 50% of sugar was consumed. The S. cerevisiae strains produced ethyl acetate in almost the same quantity at a concentration of 5 mg/L and the K. apiculata produced six-times more (30 mg/L) than the S. cerevisiae strains, independent of the fermentation temperature. The rate and amount of 1-propanol, amyl alcohols and isobutanol production were affected by the type of yeast used. The K. apiculate strain produced 50% less of the higher alcohols than the Saccharomyces strains. The results obtained showed that indigenous isolated yeasts play an important role in the tequila flavor and suggest that mixtures of these yeasts may be used to produce tequila with a unique and desirable aroma.  相似文献   

2.
Since many patients complain about halitosis without there being any clinical evidence of its cause, psychological symptoms have been pointed out as halitosis-inducing factors. The aim of this study was to evaluate the influence of anxiety on the production of volatile sulfur compounds (VSC). Seventeen undergraduate men in good oral and general health participated in this study, after approval by the ethics committee. The volunteers were requested to refrain from toothbrushing, using mouth rinse and eating on the experimental day. Before presenting the anxiogenic condition, the volunteer was asked to fill out the Beck Anxiety Inventory questionnaire, to check whether he had been exposed to stressors during the previous week. The Video-Recorded Stroop Color-Word Test (VRSCWT) was used to elicit anxiety. The VSC (halimeter), blood pressure, heart rate and salivary flow measurements were taken before and after the VRSCWT. The volunteers presented a minimal or slight level of anxiety before the test. There was an increase in the oral concentration of VSC, Systolic Blood Pressure and of heart rate (p < 0.05) after the VRSCWT, and no changes in the salivary flow. The results of the present study showed that the anxiogenic condition (VRSCWT) induced increases in VSC concentration, which might contribute to halitosis.  相似文献   

3.
Volatile compounds cause undesirable flavor when their concentrations exceed threshold values in beer fermentation. The objective of this study is to develop a system for controlling apparent extract concentration, which indicates the fermentation degree and which should be decreased below a targeted value at a fixed time under a constraint of tolerable amounts of volatile compounds. In beer fermentation, even though the production of volatile compounds is suppressed by maintaining a low fermentation temperature, a low temperature causes a delay in the control of apparent extract concentration. Volatile compound concentration was estimated on-line, and the simulation of apparent extract consumption and volatile compound production was performed. To formulate various beer tastes and conserve energy for attemperation, optimal temperature profiles were determined using a genetic algorithm (GA). The developed feedback control of the brewing temperature profile was successfully applied, and apparent extract and volatile compound concentrations at a fixed time reached their target concentrations. Additionally, the control technique developed in this study enables us to brew a wide variety of beers with different tastes.  相似文献   

4.
The yeast Saccharomyces cerevisiae synthesises a variety of volatile aroma compounds during wine fermentation. In this study, the influence of fermentation temperature on (1) the production of yeast-derived aroma compounds and (2) the expression of genes involved in aroma compounds’ metabolism (ADH1, PDC1, BAT1, BAT2, LEU2, ILV2, ATF1, ATF2, EHT1 and IAH1) was assessed, during the fermentation of a defined must at 15 and 28°C. Higher concentrations of compounds related to fresh and fruity aromas were found at 15°C, while higher concentrations of flowery related aroma compounds were found at 28°C. The formation rates of volatile aroma compounds varied according to growth stage. In addition, linear correlations between the increases in concentration of higher alcohol and their corresponding acetates were obtained. Genes presented different expression profiles at both temperatures, except ILV2, and those involved in common pathways were co-expressed (ADH1, PDC1 and BAT2; and ATF1, EHT1 and IAH1). These results demonstrate that the fermentation temperature plays an important role in the wine final aroma profile, and is therefore an important control parameter to fine-tune wine quality during winemaking.  相似文献   

5.
不同温度、光照对虫害紫茎泽兰挥发物释放的影响   总被引:2,自引:0,他引:2  
任琴  谢明惠  张青文  齐钢  刘小侠 《生态学报》2010,30(11):3080-3086
用不同温度和光照处理对照和棉蚜侵害的盆栽紫茎泽兰植株后,通过TCT-GC/MS分析了叶片挥发物的成分及相对含量。结果表明:温度与光照均不影响对照和虫害紫茎泽兰挥发物的种类,但影响其挥发物的相对含量。当光照强度达到300400μmol.m-.2s-1时,虫害紫茎泽兰挥发物中,多数单萜的相对含量显著高于对照,而倍半萜含量显著低于对照;绿叶挥发物相对含量与其对照相比差异不显著。当外界温度在15 30℃时,虫害紫茎泽兰挥发物中绿叶气体如己醛、2-己烯醛和多数单萜化合物的相对含量随温度升高而显著增加,而倍半萜含量却低于对照。说明适宜的温度和光照条件影响挥发物化学指纹图的构成,进而可能影响到蚜虫的取食。  相似文献   

6.
Aims: To evaluate the dominance and persistence of strains of Saccharomyces cerevisiae during the process of sugar cane fermentation for the production of cachaça and to analyse the microbial compounds produced in each fermentative process. Methods and Results: Three S. cerevisiae strains were evaluated during seven consecutive 24‐h fermentation batches using recycled inocula. The UFLA CA 116 strain had the largest population of viable organisms, and the maximum population was achieved in the fourth batch after 96 h of fermentation. The UFLA CA 1162 and UFLA CA 1183 strains grew more slowly, and the maximum population was reached in the seventh batch. Molecular characterization of isolated yeast cells using PFGE (pulse field gel electrophoresis) revealed that more than 86% of the isolates corresponded to the initially inoculated yeast strain. The concentration of aldehydes, esters, methanol, alcohol and volatile acids in the final‐aged beverages were within the legal limits. Conclusions: Cachaça produced by select yeast strains exhibits analytical differences. UFLA CA 1162 and UFLA CA 116 S. cerevisiae isolates can be considered the ideal strains for the artisanal production of cachaça in Brazil. Significance and Impact of the Study: The use of select yeast strains can improve the quality and productivity of cachaça production. Our findings are important for the appropriate monitoring of yeast during sugar cane fermentation. In addition, we demonstrate that UFLA CA 116 and UFLA CA 1162, the ideal yeast strains for cachaça production, are maintained at a high population density. The persistence of these yeast strains in the fermentation of sugar cane juice promotes environmental conditions that prevent or decrease bacterial contamination. Thus, the use of select yeast strains for the production of cachaça is a viable economic alternative to standardize the production of this beverage.  相似文献   

7.
Ryu HW  Cho KS  Lee TH 《Bioresource technology》2011,102(7):4654-4660
The performance of a pilot-scale anti-clogging biofilter system (ABS) was evaluated over a period of 125 days for treating ammonia and volatile organic compounds emitted from a full-scale food waste-composting facility. The pilot-scale ABS was designed to intermittently and automatically remove excess biomass using an agitator. When the pressure drop in the polyurethane filter bed was increased to a set point (50 mm H2O m−1), due to excess biomass acclimation, the agitator automatically worked by the differential pressure switch, without biofilter shutdown. A high removal efficiency (97-99%) was stably maintained for the 125 days after an acclimation period of 1 week, even thought the inlet gas concentrations fluctuated from 0.16 to 0.55 g m−3. Due the intermittent automatic agitation of the filter bed, the biomass concentration and pressure drop in the biofilter were maintained within the ranges of 1.1-2.0 g-DCW g PU−1 and below 50 mm H2O m−1, respectively.  相似文献   

8.
Journal of Applied Phycology - Volatile organic compounds (VOCs) from microalgae have many applications in several industries, and their synthesis can be affected by several factors, such as light...  相似文献   

9.
A bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m3/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppmv, the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.  相似文献   

10.
The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.  相似文献   

11.
Aims: To investigate the production of volatile sulphur compounds (VSC) in the segments of the large intestine of pigs and to assess the impact of diet on this production. Methods and Results: Pigs were fed two diets based on either wheat and barley (STD) or wheat and dried distillers grains with solubles (DDGS). Net production of VSC and potential sulphate reduction rate (SRR) (sulphate saturated) along the large intestine were determined by means of in vitro incubations. The net production rate of hydrogen sulphide and potential SRR increased from caecum towards distal colon and were significantly higher in the STD group. Conversely, the net methanethiol production rate was significantly higher in the DDGS group, while no difference was observed for dimethyl sulphide. The number of sulphate‐reducing bacteria and total bacteria were determined by quantitative PCR and showed a significant increase along the large intestine, whereas no diet‐related differences were observed. Conclusion: VSC net production varies widely throughout the large intestine of pigs and the microbial processes involved in this production can be affected by diet. Significance and Impact of the Study: This first report on intestinal production of all VSC shows both spatial and dietary effects, which are relevant to both bowel disease‐ and odour mitigation research.  相似文献   

12.
2-Phenylethyl acetate (2-PEA) is a desired aroma compound in wine due to its honey- and flowery-like characteristics. The effects of adding l-phenylalanine (Phe) during 2-PEA production were investigated in the co-fermentation of Hanseniaspora vineae (HV6) and Saccharomyces cerevisiae BDX. BDX and HV6 strains overproduced 2-phenylethyl alcohol (2-PE) and 2-PEA, respectively. The co-fermentation of BDX and HV6 achieved a 14.9 fold increase in 2-PEA odour activity value (OAV) but a 42.0 % reduction of 2-PE OAV compared to BDX fermentation; the 2-PEA concentration was significantly higher than the sum of BDX and HV6 pure fermentations. This suggests that BDX and HV6 have synergistic effects on 2-PEA formation in mixed culture. Adding 151.6 mg/L Phe enhanced the OAV of 2-PEA by 52.8 % compared to the control. The combination of Phe addition with the co-fermentation of S. cerevisiae and H. vineae is a potential way to increase 2-PEA production and improve wine aromatic quality.  相似文献   

13.
Surveys conducted worldwide have shown that a significant proportion of grape musts are suboptimal for yeast nutrients, especially assimilable nitrogen. Nitrogen deficiencies are linked to slow and stuck fermentations and sulphidic off-flavour formation. Nitrogen supplementation of grape musts has become common practice; however, almost no information is available on the effects of nitrogen supplementation on wine flavour. In this study, the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae was determined. To facilitate this investigation, a simplified chemically defined medium that resembles the nutrient composition of grape juice was used. Analysis of variance revealed that ammonium supplementation had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration. While choice of yeast strain significantly affected half of the aroma compounds measured, nitrogen concentrations affected 23 compounds, including medium-chain alcohols and fatty acids and their esters. Principal component analysis showed that branched-chain fatty acids and their esters were associated with low nitrogen concentrations, whereas medium-chain fatty esters and acetic acid were associated with high nitrogen concentrations.  相似文献   

14.
ABSTRACT

The study investigated the production of volatile organic compounds during the fermentation of maize containing 26.8% dry matter (DM). Forage was ensiled without additive or treated with 2 ml/kg of a chemical silage additive (SA) containing per litre 257 g sodium benzoate, 134 g potassium sorbate and 57 g ammonium propionate, and either sealed immediately or with a delay of 24 h. During the fermentation process, DM-losses, fermentation pattern (including ethyl lactate [EL] and ethyl acetate [EA]) and yeast numbers were determined. Delayed sealing and no SA resulted in highest DM losses with significant interactions between sealing time (ST) and SA on all sampling days (p < 0.001). The effects on organic acid production were variable depending on storage length. Ethanol production was affected by ST and SA, but promptly sealed silage treated with SA had consistently the lowest concentrations. Higher ethanol content during fermentation was associated with higher DM losses, as reflected by a strongly linear, positive relationship (R2 = 0.70, p < 0.001). Compared with promptly sealed silage, the counts of yeasts were higher after delayed sealing during the first 7 d of storage (p < 0.001). Moreover, SA reduced yeast numbers compared with untreated silage (p < 0.01). EL concentrations increased throughout storage, whereas EA acetate accumulation was very rapid and intense already during the early stages of fermentation and peaked on d 34. The differences in concentrations and accumulation pattern between EL and EA, especially during the early fermentation phases, make evident that their synthesis was facilitated by different pathways and reactions, respectively.  相似文献   

15.
Volatile sulfur compounds (VSCs) are of major importance for flavor development in foodstuffs such as cheeses. Such compounds originate from the amino acid l-methionine, which can be degraded to methanethiol (MTL), a common precursor to a variety of other VSCs. A plate assay based on double-layer petri dishes containing 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB), a chemical used for the estimation of free thiols, in the upper layer provides an easy and reliable detection method for thiol-producing, cheese-ripening microorganisms. MTL production was quantitated by measuring the yellow-orange color intensity resulting from reaction with DTNB. Using this method, 18 Geotrichum candidum strains isolated from cheeses were compared, and the color intensity was found to be correlated with the production of microbial VSCs as measured by gas chromatographic analysis.  相似文献   

16.
Fermentations of Xanthomonas campestris have been carried out on laboratory and pilot plant scales using various organic nitrogen sources in order to test their effectiveness in polysaccharide (xanthan) production. It was discovered that high nitrogen concentrations give highest yields of crude product and result in a need for only short fermentation times to achieve maximum product formation. These products, however, have inferior solution rheology to those produced from low-nitrogen media due partly to their high concentrations of co-precipitated microbial cells and partly to differences in tertiary molecular structure.  相似文献   

17.
doi:10.1111/j.1741‐2358.2009.00341.x
Effect of a denture cleanser on the concentration of volatile sulphur compounds and denture biofilm in institutionalised elderly Objective: To determine the effectiveness of a denture cleanser in reducing the concentration of volatile sulphur compounds (VSC) and its antimicrobial action. Background: Micro‐organisms from the denture biofilm can cause local and systemic disease and halitosis. Denture cleansers are important adjuncts in oral care, but there is limited investigation on their effect in malodour compounds. Material and methods: Nineteen institutionalised elderly who wore at least an upper denture were selected; their VSC concentrations were measured and the denture biofilm was collected. In phase 1, the subjects wore their old denture and data were collected before (B0) and after 7(A1), 14(A2), 28(A3) days of continuous daily use of the denture cleanser. In phase 2, new dentures were inserted and measurements were made at 30(A1.1), 60(A2.2), 90(A3.3) days of treatment. Results: The VSC concentration increased from B0 to A1 (p < 0.05), but no differences were found for the others intervals of times. Total micro‐organism data did not show a statistical difference between times in Phase I, but in Phase II, there was a statistical difference (p < 0.05) and a progressive re‐colonisation was observed. Conclusion: Within the limits of this study, it was concluded that the denture cleanser had no antimicrobial effect and VSC levels were not reduced.  相似文献   

18.
The thermophilic glycolytic anaerobe Thermoanaerobacter wiegelii grows over the pH range 5.1–7.7, and no growth is observed below pH 5.0 or above 7.7. When T. wiegelii was grown in pH-uncontrolled batch culture, glucose was fermented to ethanol, acetate, and lactate. Small amounts of lactic acid were produced once the external pH reached 6.0, and a fructose-1,6-diphosphate (FDP) activated lactate dehydrogenase (LDH) was detected in cell-free crude extracts. Maximal activation of LDH by FDP was observed at pH 6.2. As the pH of the medium declined from 6.7 to 5.1 due to the production of acetate and lactate, the total protonmotive force (Δp) remained between −110 and −130 mV, and the membrane potential (ΔΨ) decreased from −104 to −65 mV. This decrease in ΔΨ was paralleled by an increase in the chemical gradient of protons (ZΔpH) from −31 to −62 mV at pH 5.1. Based on these results, T. wiegelii maintained a small ΔpH (0.3–0.9 units, inside alkaline) as the medium pH declined and interconverted ΔΨ to ZΔpH to maintain the total Δp relatively constant. Intracellular potassium decreased from 150 mM at pH 6.70 to 50 mM at pH 5.1, and this represented a 33-mV decline in the transmembrane chemical potential of potassium. The ability to synthesize ATP remained constant as the external pH declined, and therefore metabolic energy per se was not a critical aspect of pH sensitivity. Received: March 16, 2000 / Accepted: May 8, 2000  相似文献   

19.
Yakupa is a traditional non-alcoholic cassava beverage produced by Brazilian Amerindians. In this work the microbial dynamics and metabolites involved in yakupa fermentation were investigated by PCR-denaturing gradient gel electrophoresis and chromatography analysis, respectively. The lactic acid bacteria (LAB) population was higher than yeast in the beginning of fermentation (5 log CFU mL?1 and 3 log CFU mL?1, respectively) and after 36 h both population increased reaching 7 log CFU mL?1, remaining constant until 60 h. Culture dependent and independent methods in combination identified the bacteria Lactobacillus fermentum, L. plantarum, Weissela cibaria and W. confusa, and yeasts Saccharomyces cerevisiae and Pichia kudriavzevii. Maltose (41.2 g L?1), ethanol (6.5 g L?1) and lactic acid (7.8 g L?1) were the most abundant compounds identified by high performance liquid chromatography. Aldehydes, acids, alcohols and esters were identified by gas chromatography flame ionization detection. By the metabolites and PCA analysis we may assign the beverage’s flavor to the microbial metabolism. Heterolactic LAB and S. cerevisiae dominated the yakupa fermentation, being responsible for the organoleptic characteristics of the final product. This is the first time that the microbial dynamics and physicochemical parameters were investigated in the yakupa beverage and it may contribute to the future selection of starter cultures to perform yakupa fermentations.  相似文献   

20.
Aims:  To investigate the impact of Proteus vulgaris growth on a multispecies ecosystem and on volatile aroma compound production during cheese ripening.
Methods and Results:  The microbial community dynamics and the production of volatile aroma compounds of a nine-species cheese ecosystem were compared with or without the presence of P. vulgaris in the initial inoculum. Proteus vulgaris was able to colonize the cheese surface and it was one of the dominant species, representing 37% of total isolates at the end of ripening with counts of 9·2 log10 CFU g−1. In the presence of P. vulgaris , counts of Arthrobacter arilaitensis , Brevibacterium aurantiacum and Hafnia alvei significantly decreased. Proteus vulgaris influenced the production of total volatile aroma compounds with branched-chain aldehydes and their corresponding alcohols being most abundant.
Conclusions:  Proteus vulgaris was able to successfully implant itself in a complex cheese ecosystem and significantly contributed to the organoleptic properties of cheese during ripening. This bacterium also interacted negatively with other bacteria in the ecosystem studied.
Significance and Impact of the Study:  This is the first time that the impact of a Gram-negative bacterium on cheese microbial ecology and functionality has been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号