首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the cortical collecting duct (CCD), arginin vasopressin (AVP) has been shown to increase the number and activity of basolateral Na+-K+-ATPase by recruiting or activating a latent pool of pumps. However, the precise mechanism of this phenomenon is still unknown. The aim of this study was to investigate whether this AVP-induced increase in basolateral Na+-K+-ATPase could depend on a dephosphorylation process. To this purpose, the effect of protein serine/threonine phosphatase (PP) inhibitors was examined on both the specific 3H-ouabain binding (to evaluate the number of pumps in the basolateral membrane) and the ouabain-dependent 86Rb uptake (to evaluate pump functionality) in the presence or absence of AVP. In addition, the activity of two PP, PP1 and PP2A, was measured and the influence of AVP was examined on both enzymes. Experiments have been performed on mouse CCD isolated by microdissection. Results show that inhibition of PP2A prevents the AVP-induced increase in the number and activity of Na+-K+-ATPases, independent of an effect on the apical cell sodium entry. In addition, AVP rapidly increased the activity of PP2A without effect on PP1. These data suggest that PP2A is implied in the regulation of Na+-K+-ATPase activity by AVP in the CCD and that the AVP-dependent increase in the number of Na+-K+-ATPases is mediated by a PP2A-dependent dephosphorylation process. Received: 22 March 1996/Revised: 21 June 1996  相似文献   

2.
Summary Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.  相似文献   

3.
Physiologically relevant concentrations of [Arg8]-vasopressin (AVP) induce repetitive action potential firing and Ca2+ spiking responses in the A7r5 rat aortic smooth muscle cell line. These responses may be triggered by suppression of KCNQ potassium currents and/or activation of non-selective cation currents. Here we examine the relative contributions of KCNQ5 channels and TRPC6 non-selective cation channels to AVP-stimulated Ca2+ spiking using patch clamp electrophysiology and fura-2 fluorescence measurements in A7r5 cells. KCNQ5 or TRPC6 channel expression levels were suppressed by short hairpin RNA constructs. KCNQ5 knockdown resulted in more positive resting membrane potentials and induced spontaneous action potential firing and Ca2+ spiking. However physiological concentrations of AVP induced additional depolarization and increased Ca2+ spike frequency in KCNQ5 knockdown cells. AVP activated a non-selective cation current that was reduced by TRPC shRNA treatment or removal of external Na+. Neither resting membrane potential nor the AVP-induced depolarization was altered by knockdown of TRPC6 channel expression. However, both TRPC6 shRNA and removal of external Na+ delayed the onset of Ca2+ spiking induced by 25 pM AVP. These results suggest that suppression of KCNQ5 currents alone is sufficient to excite A7r5 cells, but AVP-induced activation of TRPC6 contributes to the stimulation of Ca2+ spiking.  相似文献   

4.
Prostaglandins are important in signaling pathways involved in modulating the rates of Na+ transport in a diverse group of tissues possessing apical membrane epithelial channels. PGE2 is known to cause either stimulation, inhibition or transient stimulatory changes of Na+ transport. We have continued our studies of frog skins that are known to respond to forskolin and PGE2 with large steady-state increases of transport and have used noninvasive methods of blocker-induced noise analysis of Na+ channels to determine their channel densities (N T ) and open probabilities (P o ). In the absence of exogenous hormones, baseline rates of Na+ transport are especially high in scraped skins (R. pipiens pipiens) studied in the fall of the year. Na+ transport was inhibited by indomethacin and by removal of the unstirred layers of the corium (isolated epithelia) alone suggesting that PGE2 is responsible for the sustained and elevated rates of transport in scraped skins. Changes of transport caused by indomethacin, forskolin or PGE2 were unquestionably mediated by considerably larger changes of N T than compensatory changes of P o . Since cAMP caused no change of P o in tissues pretreated with indomethacin, PGE2 appears in this tissue to serve a dual role, increasing the steady state N T by way of cAMP and decreasing P o by unknown mechanisms. Despite appreciable PGE2-related decreases of P o , the net stimulation of transport occurs by a considerably greater cAMP-mediated increase of N T . Received: 28 February 1996/Revised: 22 August 1996  相似文献   

5.
Renal A6 cells have been reported in which hyposmolality stimulates Na+ transport by increasing the number of conducting amiloride-sensitive 4-pS Na+ channels at the apical membrane. To study a possible role of protein tyrosine kinase (PTK) in the hyposmolality-induced signaling, we investigated effects of PTK inhibitors on the hyposmolality-induced Na+ transport in A6 cells. Tyrphostin A23 (a PTK inhibitor) blocked the stimulatory action of hyposmolality on a number of the conducting Na+ channels. Tyrphostin A23 also abolished macroscopic Na+ currents (amiloride-sensitive short-circuit current, I Na ) by decreasing the elevating rate of the hyposmolality-increased I Na . Genistein (another type of PTK inhibitor) also showed an effect similar to tyrphostin A23. Brefeldin A (BFA), which is an inhibitor of intracellular translocation of protein, blocked the action of hyposmolality on I Na by diminishing the elevating rate of the hyposmolality-increased I Na , mimicking the inhibitory action of PTK inhibitor. Further, hyposmolality increased the activity of PTK. These observations suggest that hyposmolality would stimulate Na+ transport by translocating the Na+ channel protein (or regulatory protein) to the apical membrane via a PTK-dependent pathway. Further, hyposmolality also caused an increase in the plasma (apical) membrane capacitance, which was remarkably blocked by treatment with tyrphostin A23 or BFA. These observations also suggest that a PTK-dependent pathway would be involved in the hyposmolality-stimulated membrane fusion in A6 cells. Received: 6 October 1999/Revised: 4 February 2000  相似文献   

6.
Summary The effects of complete substitution of gluconate for mucosal and/or serosal medium Cl on transepithelial Na+ transport have been studied using toad urinary bladder. With mucosal gluconate, transepithelial potential difference (V T) decreased rapidly, transepithelial resistance (R T) increased, and calculated short-circuit current (I sc) decreased. CalculatedE Na was unaffected, indicating that the inhibition of Na+ transport was a consequence of a decreased apical membrane Na+ conductance. This conclusion was supported by the finding that a higher amiloride concentration was required to inhibit the residual transport. With serosal gluconateV T decreased,R T increased andI sc fell to a new steady-state value following an initial and variable transient increase in transport. Epithelial cells were shrunken markedly as judged histologically. CalculatedE Na fell substantially (from 130 to 68 mV on average). Ba2+ (3mm) reduced calculatedE Na in Cl Ringer's but not in gluconate Ringer's. With replacement of serosal Cl by acetate, transepithelial transport was stimulated, the decrease in cellular volume was prevented andE Na did not fall. Replacement of serosal isosmotic Cl medium by a hypo-osmotic gluconate medium (one-half normal) also prevented cell shrinkage and did not result in inhibition of Na+ transport. Thus the inhibition of Na+ transport can be correlated with changes in cell volume rather than with the change in Cl per se. Nystatin virtually abolished the resistance of the apical plasma membrane as judged by measurement of tissue capacitance. With K+ gluconate mucosa, Na+ gluconate serosa, calculated basolateral membrane resistance was much greater, estimated basolateral emf was much lower, and the Na+/K+ basolateral permeability ratio was much higher than with acetate media. It is concluded the decrease in cellular volume associated with substitution of serosal gluconate for Cl results in a loss of highly specific Ba2+-sensitive K+ conductance channels from the basolateral plasma membrane. It is possible that the number of Na+ pump sites in this membrane is also decreased.  相似文献   

7.
We have used polyclonal antibodies generated against purified bovine renal amiloride-sensitive Na+ channels to localize amiloride-sensitive Na+ channels within the lower intestine (colon and coprodeum) of the hen. These antibodies cross-reacted with two polypeptides exhibiting Mr's of 235 and 150 kDa on immunoblots of detergent-solubilized apical membrane fractions from both the colon and coprodeum. The apparent molecular masses of theses polypeptides are in agreement with the Mr's of 2 of the subunits of the renal high amiloride-affintiy Na+ channel, namely the and the (=amiloride binding) subunits. The cellular distribution of Na+ channels was determined by immunoperoxidase and indirect immunofluorescence cytochemical techniques. The apical (luminal) membrane and cytoplasm of villar principal cells in both colon and coprodeum exhibited immunoreactivity, whereas goblet cells were nagative. Both principal and goblet cells of the crypts were also negative. We conclude that the amiloride-sensitive Na+ channels are localized to the principal cells of the intestinal villi and that these cells are responsible for intestinal Na+ absorption.  相似文献   

8.
We have previously demonstrated that apical Na+ channels in A6 renal epithelial cells are associated with spectrin-based membrane cytoskeleton proteins and that the lateral mobility of these channels, as determined by fluorescence photobleach recovery (FPR) analysis, is severely restricted by this association (Smith et al., 1991. Proc. Natl. Acad. Sci. USA 88:6971–6975). Recent data indicate that the actin component of the cytoskeleton may play a role in modulating Na+ channel activity (Cantiello et al., 1991. Am. J. Physiol. 261:C882–C888); however, it is unknown if the Na+ channel's linkage to the spectrin-based membrane cytoskeleton is also involved in regulating channel activity. In this study, we have used FPR to examine if the linkage of the Na+ channels to the membrane cytoskeleton is a site for modulation of Na+ channel activity in filter grown A6 cells by vasopressin and aldosterone. We hypothesized that if the linkage of the Na+ channels to the membrane cytoskeleton is a site for regulation of Na+ channel activity by vasopressin and aldosterone, then hormone-mediated changes in either the membrane cytoskeleton or the affinity of the Na+ channel for the membrane cytoskeleton, should be reflected in changes in the lateral mobility and/or mobile fraction of Na+ channels on the cell surface. FPR revealed that although the rates of lateral mobility were not affected, there was a twofold increase in mobility fraction (f) of apical Na+ channels in aldosterone-treated (16 hr) monolayers (f = 32.31 ± 5.42%) when compared to control (unstimulated) (f = 14.2 ± 0.77%) and vasopressin-treated (20 min) (f = 12.7 ± 2.4%) monolayers. The twofold increase in mobile fraction of Na+ channels corresponds to the average increase in Na+ transport in response to aldosterone in A6 cells. The aldosterone-induced increase in Na+ transport and mobile fraction can be inhibited by the methylation inhibitor, 3-deazaadenosine, consistent with the hypothesis that a methylation event is involved in aldosterone induced upregulation of Na+ transport. We propose that the membrane cytoskeleton is involved in the aldosterone-mediated activation of epithelial Na+ channels.Supported by NIH grants DK37206 (DJB), NS26733 and NS28072 (KJA), DK46705 (PRS) and AHA New York Affiliate grant 91007G (LCS).  相似文献   

9.
In the epithelium of rat distal colon the acetylcholine analogue carbachol induces a transient increase of short-circuit current (Isc) via stimulation of cellular K+ conductances. Inhibition of the turnover of inositol-1,4,5-trisphosphate (IP3) by LiCl significantly reduced both the amplitude and the duration of this response. When the apical membrane was permeabilized with nystatin, LiCl nearly abolished the carbachol-induced activation of basolateral K+ conductances. In contrast, in epithelia, in which the basolateral membrane was bypassed by a basolateral depolarization, carbachol induced a biphasic increase in the K+ current across the apical membrane consisting of an early component carried by charybdotoxin- and tetraethylammonium-sensitive K+ channels followed by a sustained plateau carried by channels insensitive against these blockers. Only the latter was sensitive against LiCl or inhibition of protein kinases. In contrast, the stimulation of the early apical K+ conductance by carbachol proved to be resistant against inhibition of phospholipase C or protein kinases. However, apical dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, or a Ca2+-free mucosal buffer solution significantly reduced the early component of the carbachol-induced apical K+ current. The presence of an apically localized Na+/Ca2+-exchanger was proven immunohistochemically. Taken together these experiments reveal divergent regulatory mechanisms for the stimulation of apical Ca2+-dependent K+ channels in this secretory epithelium, part of them being activated by an inflow of Ca2+ across the apical membrane.
G. SchultheissEmail:
  相似文献   

10.
We used the Aplysia californica intestinal epithelium to investigate the effect of alanine-stimulated Na+ absorption on apical membrane exocytosis and whether stimulated exocytosis requires intact actin filaments. The fluid-phase marker fluorescein dextran was used to determine rates of apical membrane exocytosis. L-alanine significantly increased apical exocytosis by ~30% compared to controls, and there is a modest, positive correlation between alanine-stimulated exocytosis and short-circuit current (I SC). Thus, apical exocytosis is modulated to some extent by the magnitude of Na+ and alanine entry across the apical membrane. Apical exocytosis is also responsive to virtually any increase in Na+ and alanine entry because increments in alanine-stimulated I SC as small as 1 A/cm2 stimulated exocytosis. We used D-alanine to determine which parameter (sensitivity to transport vs. magnitude of transport) was most important in activation of apical exocytosis. D-alanine-stimulated I SC was one-sixth that of L-alanine, but stimulated exocytosis was only 29% less than that of L-alanine. Therefore, the apical exocytic system is more responsive to small increases in transport than to the magnitude of transport. Latrunculin A (Lat-A) disrupts the actin cytoskeleton and reduced constitutive apical exocytosis by ~65% and completely abolished alanine-stimulated exocytosis. Hence, constitutive exocytosis and alanine-stimulated exocytosis require actin filaments for recruitment of vesicles to the apical membrane. During nutrient absorption, actin filament-regulated apical exocytosis may represent a negative feedback system that modulates apical membrane tension.Abbreviations alaASW ASW containing alanine - C m membrane capacitance - ASW artificial seawater - ETOH ethanol - fCa apical membrane fractional capacitance - FD fluorescein dextran - G K plasma membrane potassium conductance - G K,a apical membrane potassium conductance - HRP horseradish peroxidase - I SC short-circuit current - J Na transcellular net sodium flux - K D dissociation constant - Lat-A latrunculin A - manASW ASW containing mannitol - PT proximal tubule - RFU relative fluorescence units - V a apical membrane potential Communicated by L.C.-H. Wang  相似文献   

11.
Summary Ischemia results in the marked reduction of renal proximal tubule function which is manifested by decreased Na+ and H2O reabsorption. In the present studies the possibility that altered Na+ and H2O reabsorption were due to ischemia-induced loss of surface membrane polarity was investigated. Following 15 min of renal ischemia and 2 hr of reperfusion, proximal tubule cellular ultrastructure was normal. However, abnormal redistribution of NaK-ATPase to the apical membrane domain was observed and large alterations in apical membrane lipid composition consistent with loss of surface membrane polarity were noted. These changes were associated with large decreases in Na+ (37.4vs. 23.0%,P<0.01) and H2O (48.6vs. 36.9%,P<0.01) reabsorption at a time when cellular morphology, apical Na+ permeability, Na+-coupled cotransport, intracellular pH and single nephron filtration rates were normal. We propose that the abnormal redistribution of NaK-ATPase to the apical membrane domain is in part responsible for reduced Na+ and H2O reabsorption following ischemic injury.  相似文献   

12.
In the present study we investigated the effect of extracellular gadolinium on amiloride-sensitive Na+ current across Xenopus alveolar epithelium by Ussing chamber experiments and studied its direct effect on epithelial Na+ channels with the patch-clamp method. As observed in various epithelia, the short-circuit current (I sc) and the amiloride-sensitive Na+ current (I ami) across Xenopus alveolar epithelium was downregulated by high apical Na+ concentrations. Apical application of gadolinium (Gd3+) increased I sc in a dose-dependent manner (EC 50 = 23.5 µM). The effect of Gd3+ was sensitive to amiloride, which indicated the amiloride-sensitive transcellular Na+ transport to be upregulated. Benz-imidazolyl-guanidin (BIG) and p-hydroxy-mercuribenzonic-acid (PHMB) probably release apical Na+ channels from Na+-dependent autoregulating mechanisms. BIG did not stimulate transepithelial Na+ currents across Xenopus lung epithelium but, interestingly, it prevented the stimulating effect of Gd3+ on transepithelial Na+ transport. PHMB increased I sc and this stimulation was similar to the effect of Gd3+. Co-application of PHMB and Gd3+ had no additive effects on I sc. In cell-attached patches on Xenopus oocytes extracellular Gd3+ increased the open probability (NP o) of Xenopus epithelial sodium channels (ENaC) from 0.72 to 1.79 and decreased the single-channel conductance from 5.5 to 4.6 pS. Our data indicate that Xenopus alveolar epithelium exhibits Na+-dependent non-hormonal control of transepithelial Na+ transport and that the earth metal gadolinium interferes with these mechanisms. The patch-clamp experiments indicate that Gd3+ directly modulates the activity of ENaCs.  相似文献   

13.
The aim of this work was to study the effect of some pharmacological cholinergic agents on the events that follow the interaction of arginine vasopressin with toad bladder membrane receptors related to synthesis of 3′5′cAMP. The water flow through the membrane was measured gravimetrically in sac preparations of the membrane. In the absence of arginine vasopressin (AVP), carbachol induced a significant increase in the water flow (37%) related to the basal (Ringer's solution). On the other hand, when carbachol and AVP were associated, a significant decrease of AVP hydrosmotic activity occurred (23%). The inhibitory effect of carbachol on the AVP action was almost completely abolished by the cholinergic antagonists atropine, pirenzepine, 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and the calcium antagonist lanthanum. Similarly, when carbachol and 3′5′ cyclic adenosine monophosphate (3′5′cAMP) were associated, a decrease of nucleotide hydrosmotic activity was observed (12.80%). This effect was partially restored by the addition of pirenzepine or 4-DAMP in the bath solution. These results suggest a role for muscarinic receptors of sub-type M1 and M3, which are involved in the intracellular calcium release. The increase of calcium concentration in the intracellular medium acts as a negative modulator in the hydrosmotic action of antidiuretic hormone.  相似文献   

14.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

15.
Two-electrode voltage clamp (TEVC) methods were used to explore conductive transport pathways in principal cells, the dominant cell type in Malpighian tubules of the yellow fever mosquito. The basolateral membrane of principal cells had a voltage (Vbl) of -85.1 mV in 49 principal cells under control conditions. Measures of the input resistance Rpc together with membrane fractional resistance yielded estimates of the conductance of the basolateral membrane (gbl = 1.48 μS) and the apical membrane (ga = 3.13 μS). K+ channels blocked by barium accounted for 0.94 μS of gbl. Estimates of transference numbers yielded the basolateral membrane Na+ conductance of 0.24 μS, leaving 0.30 μS (20%) of gbl unaccounted. The secretagogue db-cAMP (0.1 mM), a known activator of the basolateral membrane Na+ conductance, significantly depolarized Vbl to -65.0 mV and significantly increased gbl from 1.48 μS to 2.47 μS. The increase was blocked with amiloride (1 mM), a known blocker of epithelial Na+ transport. The inhibition of metabolism with di-nitrophenol significantly depolarized Vbl to -9.7 mV and significantly increased Rpc from 391.6 kΩ to 2612.5 kΩ. Similar results were obtained with cyanide, but it remains unclear whether the large increases in Rpc stem from the uncoupling of epithelial cells and/or the shutdown of conductive transport pathways in basolateral and apical membranes. Our results indicate that the apical membrane of principal cells is more than twice as conductive as the basolateral membrane. Partial ionic conductances suggest the rate-limiting step for transepithelial Na+ secretion at the basolateral membrane.  相似文献   

16.
17.
The furosemide-sensitive Na+-K+-2Cl cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca2+-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter.  相似文献   

18.
The magnitude of the Na+, K+ and leakage currents through voltage-clamped single nodes of Ranvier of the frog versus time were monitored with the aid of a computer as the node was perfused with one of the following “specific” chemical reagents in an appropriate Ringer's solution: six enzymes, N-bromosuccinimide, N-ethyl- N′-(3-dimethylaminopropyl)-carbodiimide methiodide, tetranitromethane, N-ethylmaleimide, NaIO4, NaIO3, and sodium cyanoborohydride.While the enzymes examined showed little effect on the ionic currents several of the other reagents permanently altered selectively the K+ current, leading to the tentative conclusion that accessible SH groups are more important to the operation of the K+ mechanisms than to the Na+ mechanisms. With some reagents the leakage current suddenly increased dramatically while the Na+ and K+ mechanisms were still functioning “normally”, though at reduced levels. Accessible iminium or enamine linkages or 1,2-dihydroxy groupings may be modified if present, without profound effects on the ionic currents. Some experimental basis is provided for the possibility that not all “channels” of a particular ion are chemically alike.  相似文献   

19.
Epithelial Na+ channel (ENaC) function is regulated by the intracellular Na+ concentration ([Na+]i) through a process known as Na+ feedback inhibition. Although this process is known to decrease the expression of proteolytically processed active channels on the cell surface, it is unknown how [Na+]i alters ENaC cleavage. We show here that [Na+]i regulates the posttranslational processing of ENaC subunits during channel biogenesis. At times when [Na+]i is low, ENaC subunits develop mature N-glycans and are processed by proteases. Conversely, glycan maturation and sensitivity to proteolysis are reduced when [Na+]i is relatively high. Surface channels with immature N-glycans were not processed by endogenous channel activating proteases, nor were they sensitive to cleavage by exogenous trypsin. Biotin chase experiments revealed that the immature surface channels were not converted into mature cleaved channels following a reduction in [Na+]i. The hypothesis that [Na+]i regulates ENaC maturation within the biosynthetic pathways is further supported by the finding that Brefeldin A prevented the accumulation of processed surface channels following a reduction in [Na+]i. Therefore, increased [Na+]i interferes with ENaC N-glycan maturation and prevents the channel from entering a state that allows proteolytic processing.  相似文献   

20.
Summary The presence and regional localization of voltagegated ion channels on taste cells inNecturus maculosus were studied. Lingual epithelium was dissected from the animal and placed in a modified Ussing chamber such that individual taste cells could be impaled with intracellular microelectrodes and the chemical environment of the apical and basolateral membranes of cells could be strictly controlled. That is, solutions bathing the the mucosal and serosal surfaces of the epithelium could be exchanged independently and the effects of pharmacological agents could be tested selectively on the apical or basolateral membranes of taste cells. In the presence of amphibian physiological saline, action potentials were elicited by passing brief depolarizing current pulses through the recording electrode. Action potentials provided a convenient assay of voltage-gated ion channels. As in other excitable tissues, blocking current through Na+, K+, or Ca2+ channels had predictable and consistent effects on the shape and magnitude of the action potential. A series of experiments was conducted in which the shape and duration of regenerative action potentials were monitored when the ionic composition was altered and/or pharmacological blocking agents were added to the mucosal or to the serosal chamber. We have found the following: (1) voltage-gated K+ channels (delayed rectifier) are found predominately, if not exclusively, on the chemoreceptive apical membrane; (ii) voltage-gated Na+ and Ca2+ channels are found on the apical (chemoreceptive) and basolateral (synaptic) membrane; (iii) there is a K+ leak channel on the basolateral membrane which appears to vary seasonally in its sensitivity to TEA. The nonuniform distribution of voltage-gated K+ channels and their predominance on the apical membrane may be important in taste transduction: alterations in apical K+ conductance may underlie receptor potentials ellicted by rapid stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号