首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In north-west Germany the ground beetle fauna was investigated using pitfall traps at 79 sampling sites in ancient woodlands and recent woodlands (with and without direct contact to old stands). Two woodland types were considered: The Quercion robori-petraea-woodlands (oak-beech-type) on mainly sandy soils and the Stellario-Carpinetum-woodlands (hornbeam-type) on mainly loamy soils. The number of recorded ground beetle species inhabiting exclusively or predominantly woodlands in the investigation area is significantly higher in ancient stands of both woodland types than in recent ones. No statistically substantiated relation between habitat size (both about 1800 and in 1990) and the number of characteristic woodland ground beetle species could be ascertained. Carabus glabratus and Abax parallelus show a distinct focus in ancient woodlands. Significantly more records of Carabus violaceus and Abax parallelepipedus are known from ancient woodlands than from recent ones. Twelve of the 16 ground beetle species, for which no difference in the colonisation of ancient and recent woodlands was ascertained, are macropterous. Half of the eight brachypterous woodland species is exclusively or predominantly found in ancient woodlands, suggesting that power of dispersal is an important factor which determines the species number in woodland fragments of different age.  相似文献   

2.
Ancient woodlands, with their long ecological continuity, frequently harbor a high number of typical, rare and threatened species, and are therefore of particular importance for nature conservation. To pinpoint these habitats, a common application is the use of plants as “ancient woodland indicators”. The occurrence of these particular species allows for evaluating the continuity of woodland cover in time. While lists of ancient woodland vascular plants have been derived for many regions, the identification and use of bryophytes as ancient woodland indicators has been widely neglected. This is a bit surprising because certain woodland bryophytes are very sensitive to varying environmental conditions or changes in land management. It therefore appeared promising to compile an ecologically grounded list of ancient woodland indicator bryophytes for practical use.In this study, we present a set of ancient woodland indicator bryophytes based on the analysis of datasets from the North German federal state of Schleswig-Holstein. To compile this list, we systematically evaluated the bryophyte distribution data from floristic surveys in relation to ancient woodland cover data from state-wide inventories. In this way, we were able to determine ancient woodland bryophytes using consistent and repeatable statistical methods.The presented list of 31 ancient woodland indicator bryophytes is ecologically sound and corresponds well with data from the sparse literature. We could distinguish two groups of ancient woodland indicator bryophytes. The first group is linked to base-rich, semi-natural deciduous woodlands with high soil and air humidity. The second group comprises acidophilic bryophytes that occur not only in acidic beech and oak woods, but also in acidic mixed or coniferous forests on ancient woodland sites. Apart from the ancient woodland indicator bryophytes, we could identify one group of recent woodland bryophytes and four groups of bryophytes that are more or less indifferent with respect to woodland continuity.Finally, we provide recommendations for the application of ancient woodland indicator bryophytes in nature conservation practice. Management suggestions for the conservation of the typical bryophyte diversity of ancient semi-natural woodlands are also given.  相似文献   

3.
We investigated ground beetle communities (Coleoptera, Carabidae) in ancient woodland remnants in north-western Lower Saxony, Germany. A total of 90 pitfall traps was exposed in a stratified design in 10 stands of mature oak–beech and oak–hornbeam forests in the year 2003. Overall, 47 species (10,676 individuals) were recorded. Among these were the two relict species Carabus glabratus and Abax parallelus, and 14 further eurytopic forest species. Eleven species exhibited a high frequency and were found in all of the ten stands. Multiple linear regressions showed several significant relationships at two scales for species richness of different groups of carabids and for several of the measured environmental factors. Forest area, litter depth, amount of dead wood, distance to forest edge, and soil moisture were found to be key factors determining species richness. Furthermore, recent disturbance by logging reduced the number of forest species. According to direct gradient analyses soil moisture and litter depth have greatest influence on species communities of both, forest species and widespread species. Habitat suitability models for the two recorded relict species, A. paralellus and C. glabratus, were developed using logistic regression. The presence of A. parallelus in the mature ancient woodland remnants depends mainly on higher values of soil moisture, whereas for C. glabratus none of the measured environmental variables appeared to be key factors. Implications for the conservation of carabid assemblages in mature ancient woodlands include the advice to spread out logging over long periods of time and over various woodlands in order to keep the stand disturbance at a long-term low level. Variation in logging practices may help to conserve diverse structures. Afforestation with non-native tree species should be avoided in the managed ancient woodlands. Finally, especially the preservation of a high soil moisture seems to be important to conserve typical carabid communities.  相似文献   

4.
Historic maps show that the Central European landscape was influenced by exploitive human land-use during the middle ages and in the following centuries. A mixture of ancient woodlands, which survived the period of woodland destruction, and recent woodlands, which were established after 1800, cover about 10% of the study area in NW Germany today. Weevils (Coleoptera: Curculionidae) of the subfamily Cryptorhynchinae with the genera Acalles, Kyklioacalles, Ruteria and of the subfamily Molytinae, tribe Acicnemidini with the genus Trachodes are all flightless and possibly influenced by landscape history. The aims of this investigation are (1) to examine the spatial distribution of flightless saproxylic weevils in ancient and recent woodlands in NW Germany and (2) to test the frequency of possible relict species in relation to historical and current woodland size. Based on a field study in 29 deciduous woodlands and species records in collections and literature, six flightless saproxylic weevils were found to be associated with ancient woodlands in NW Germany. None of these were recorded in any of the 14 recent woodlands studied. The frequency of these relict species is correlated with historical, but not with current, woodland size. Distribution maps for Lower Saxony and data on the phenology of the relict species are presented. These weevils are relict species of ancient woodland, because they were unable to colonise isolated woods that were established after 1800. All of them are dependent on dead or dying wood for larval development. The results show that ancient broadleaved woodlands with long-lasting habitat continuity are of high conservation value for invertebrate species such as saproxylic weevils.  相似文献   

5.
The demise of coppicing in UK ancient woodlands, combined with the planting of non-native, fast-growing conifers in the twentieth century, heightens the potential recharge value of ground flora seed banks. Soil cores from adjoining semi-natural and conifer-containing stands in four lowland ancient woods in central England were removed to establish seed bank species richness. During a fourteen-month germination trial soil from two depths yielded 6554 seedlings from 81 species, ten of which showed a strong affinity for ancient woodland conditions. Juncus effusus accounted for 80% of emergent seeds whilst 23 other species, including Lysimachia nummularia and Potentilla sterilis, were represented by only one individual. Species richness is described by a model that explains 40% of observed variance (P < 0.00001). The model has three significant variables: species richness increases as soil pH rises, and decreases with both depth and increasing time since the most recent planting/disturbance event. No difference was found in the density of seeds from species common to paired semi-natural and conifer-containing stands that were separated only by a woodland ride, suggesting prior management and environmental conditions have a greater influence on seed banks than current stand type. Sørensen similarity index values revealed poor congruence between above-ground vegetation and species in the seed bank. Taking pH measurements in conifer stands identified as younger in terms of planting/disturbance may help locate areas where greater numbers of species (including woodland specialists) are located. Caution is required, however, as these seed banks may also contain non-target, competitive species that may swamp the regeneration of woodland specialists.  相似文献   

6.
As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based.  相似文献   

7.
Abstract. Recent studies indicate that, in the present-day agricultural landscape, the floristic composition of young woodland communities can be fully developed if the woods are situated adjacent to ancient woodlands. Four 70-yr-old deciduous woods in the Carpathian foothills were examined in relation to three adjacent ancient oak-hornbeam and oak-pine woodlands, which are the nearest source of woodland species diaspores. On the basis of data from 208 plots, the frequencies of various species groups in the field layer of the woods were analysed. The dependence of vegetation differentiation within the recent woods on (a) distance to the border with the ancient woodlands and (b) light intensity was examined by Partial Detrended Canonical Correspondence Analysis (DCCA). A significant relation between distance to ancient woodland and species composition was found for recent woods on rich brown soils. The vegetatively propagating species, myrmecochores and small autochores attained higher cover values near ancient woodland; endozoochores and anemochores were most abundant further away. Within recent, more open woods on poor podzolic and leached brown soils, colonisation is strongly inhibited by dense growth of Carex brizoides; here, vegetation regeneration is much slower than in woods on rich soils much further away from the source of diaspores.  相似文献   

8.
9 small ancient woodlands (>200 years), 9 planted woodland sites (25 — ca. 100 years), and 6 sites in grazed scrub (ca. 100 years) on the RøsnÆs peninsula, Denmark, showed characteristic differences: in ancient woodland, the tree and shrub layer was fairly rich, the field layer rather poor in species. The dominance of spring flowering geophytes, the abundance of Anemone nemorosa , and the occurrence of Corylus avellana and Polygonatum multiflorum were characteristic. pH of the soil was relatively low, organic matter content high, and light intensity at the forest floor in summer low. In planted woodland there was more light, and the field layer was rich in short-lived species, but poor in spring flowering geophytes. Many woodland species were rare in planted woodland, some did not at all occur there, and none were specific for this type of woodland. The scrub was marked by grazing and a strong relief, hence pH was high and organic matter content low. The field layer was rich both in shortlived species and in spring flowering geophytes. — It is suggested that ancient woodland species (i.e. species restricted to or preferably occurring in woodlands existing prior to the enclosure ca. 200 years ago) is a heterogenous group, consisting of a) species favoured by traditional woodland management; b) species restricted to woodlands where specific environmental (e.g. soil) conditions have had sufficient time to develop; c) species with limited ability to spread or establish; or d) species which in ancient woodland are represented by small and scattered populations.  相似文献   

9.
Summary

This paper deals with three aspects of the process of restoring planted ancient woodland sites(PAWS) to semi-natural conditions. Firstly, we describe a baseline assessment of botanical interest within a PAWS. This survey has been undertaken to determine the impact of clearfelling, particularly on lower plants and the subsequent colonisation of ground vegetation into areas currently dominated by needle litter. Secondly, we discuss some of the main considerations when undertaking restoration through alternative silvicultural systems to clearfell. Finally, we describe the main requirement for successful site monitoring for management purposes.

The last decade has seen considerable attention given to the benefits of restoring plantations on ancient woodland sites (PAWS) to semi-natural conditions. The survival of species and communities associated with ancient woodland through the process of conversion will be a critical measure of success for restoration practice. It is generally assumed that a gradual approach will improve the chances of such success.

Glencripesdale National Nature Reserve (NNR) is a heterogeneous area of semi-natural open ground, ancient woodland and Sitka spruce plantation. The plantation blocks contain occasional discrete elements of semi-natural vegetation, including some veteran trees. Because of difficult access and poor stability, silvicultural options are limited and clear felling is the only practical option. We describe a simple method of monitoring changes to cryptogamic communities and ground layer vegetation prior to and following clearfelling of the plantation matrix. Baseline data are presented.

In more stable and accessible stands, there are a number of alternative silvicultural approaches to consider when gradually restoring a PAWS. This paper addresses the question of how to secure ancient woodland remnants. We outline some of the initial silvicultural considerations such as stability, thinning/felling pattern and light requirements of native tree species. An approach to site monitoring is presented to allow managers to assess whether conditions are improving or declining and whether they are delivering objectives.  相似文献   

10.
Abstract. The main objectives of this study were to investigate sheep foraging behaviour in mixed Atlantic woodland and to assess its impact on the forest understorey. We established 89 plots along four forest types: Fagus woodland, Quercus woodland, riparian gallery forest and conifer plantations. The presence of plant species in the forest understorey and their foraging damage was surveyed bimonthly from July 1996 to June 1997. In addition, we estimated the selection of woodland types by sheep through the pellet‐group count technique. The intensity of foraging by sheep was negligible for most of the plant species, however several species showed substantial damage in some woodland types. Among the species that were abundant and widespread in the entire study area, Rubus ulmifolius, graminoids and Ilex aquifolium were consumed most. Sheep selected only larch plantations, where grasses and Rubus were very abundant. This grazing behaviour reduced browsing damage of the understorey of woodland stands with higher conservation value, such as Quercus and Fagus woodlands.  相似文献   

11.
Urban expansion threatens global biodiversity through the destruction of natural and semi-natural habitats and increased levels of disturbance. Whilst woodlands in urban areas may reduce the impact of urbanisation on biodiversity, they are often subject to under or over-management and consist of small, fragmented patches which may be isolated. Effective management strategies for urban woodland require an understanding of the ecology and habitat requirements of all relevant taxa. Yet, little is known of how invertebrate, and in particular moth, assemblages utilise urban woodland despite being commonly found within the urban landscape. Here we show that the abundance, species richness, and species diversity of moth assemblages found within urban woodlands are determined by woodland vegetation character, patch configuration and the surrounding landscape. In general, mature broadleaved woodlands supported the highest abundance and diversity of moths. Large compact woodlands with proportionally less edge exposed to the surrounding matrix were associated with higher moth abundance than small complex woodlands. Woodland vegetation characteristics were more important than the surrounding landscape, suggesting that management at a local scale to ensure provision of good quality habitat may be relatively more important for moth populations than improving habitat connectivity across the urban matrix. Our results show that the planting of broadleaved woodlands, retaining mature trees and minimising woodland fragmentation will be beneficial for moth assemblages.  相似文献   

12.
While the area of plantation forests continues to increase worldwide, their contribution to the conservation of biodiversity is still controversial. There is a particular concern on the central role played by natural habitat remnants embedded within the plantation matrix in conserving species-rich insect communities. We surveyed butterflies in maritime pine plantation landscapes in south-western France in 83 plots belonging to seven habitat types (five successional stages of pine stands, native deciduous woodlands and herbaceous firebreaks). The effect of plot, habitat and landscape attributes on butterfly species richness, community composition and individual species were analysed with a General Linear Model (GLM), partial Canonical Correspondence Analysis (CCA) and the IndVal method. The most important factors determining butterfly diversity and community composition were the presence of semi-natural habitats (deciduous woodlands and firebreaks) at the landscape scale and the composition of understorey vegetation at the plot scale. Pure effects of plot variables explained the largest part of community variation (12.8%), but landscape factors explained an additional, independent part (6.7%). Firebreaks were characterized by a higher species richness and both firebreaks and deciduous woodlands harboured species not or rarely found in pine stands. Despite the forest-dominated landscape, typical forest butterflies were rare and mainly found in the deciduous woodlands. Threatened species, such as Coenonympha oedippus and Euphydryas aurinia, were found in pine stands and in firebreaks, but were more abundant in the latter. In the studied plantation forest, the conservation of butterflies depends mainly on the preservation of semi-natural habitats, an adequate understorey management and the maintenance of soil moisture levels.  相似文献   

13.
Biodiversity patterns of the woodland-steppe ecotone in southeastern Inner Mongolia were investigated. Controlled by climatic factors, the plant species diversity of the woodland-steppe ecotone is moderate as compared with the adjacent woodland and steppe communities. From woodland through woodland-grassland and woodland-steppe to steppe, about 2/3 species were replaced at each boundary; only seven herb species were detected to be distributed in all four vegetation zones. Landscape classification based on landform, climate, and vegetation shows that landform condition is most critical to landscape diversity in the studied area. The most fragmented landform in the woodland zone does not necessarily lead to low plant species diversity. However, similar understory species in different woodland types lead to continuous woodland vegetation and, hence, high species richness. High fragmentation in the woodland-steppe zone and discontinuous distribution of woodlands might be a driving factor for lower species richness. Reconstruction of the Holocene climatic changes and vegetation development demonstrates that the highest plant species diversity occurred in the ecotone from 4500 to 2500 14C yr BP at different sites, while the woodland zone extended much farther northwestward. When woodlands retreated from the current ecotone with climatic drying, the fragmentation of woodlands in the current ecotone led to plant species loss.  相似文献   

14.
Summary

The detrimental effects of conifer plantations on open ground habitats have been well catalogued and discussed, but the potential contribution of planted forests to the conservation of woodland biodiversity has not been quantified to the same extent. This quantification is needed urgently to help forest managers fulfil commitments to biodiversity enhancement as outlined in the UK Biodiversity Action Plan, the UK Forestry Standard and the UK Woodland Assurance Scheme (UKWAS). Results are presented from a five-year programme of research aimed at obtaining baseline information on biodiversity in planted forests and evaluating the contribution of planted forests to the conservation of native flora and fauna. Fifty-two plots were surveyed in total, covering a range of different tree crops (Scots pine Pinus sylvestris L., Sitka spruce Picea sitchensis (Bong.) Carr., Norway spruce Picea abies L. and Corsican pine Pinus nigra var maritima (Aitón) Melville) and stand ages (pre-thicket, mid-rotation, mature and over-mature) in three contrasting bioclimatic zones (upland, foothills and lowlands) throughout Britain. Additional plots were established in semi-natural woodland to allow comparisons between the biodiversity of plantations and native stands. Over 2000 species were recorded in total, including 45 Red Data Book species. Planted stands had similar or richer fungal and invertebrate communities to those of the native stands but poorer lichen and vascular plant communities. The latter were strongly affected by shading, dense, mid-rotation Sitka spruce stands having the lowest species counts. In contrast, these stands had a high diversity of mycorrhizal fungi, including a number of rare and threatened species normally associated with native pine wood. Bryophyte species-richness was related more to climate than woodland type, with the wetter upland spruce and native oak stands having the most diverse communities. Compared to the younger planted stands, over-mature planted stands had a higher proportion of species characteristic of semi-natural woodland stands. This related to greater structural diversity and higher deadwood volumes in the over-mature stands. It is concluded that conifer plantations make a positive contribution to biodiversity conservation in the UK and hence to the UK Biodiversity Action Plan. No single stand or crop type provides ‘optimal’ conditions for biodiversity, but the habitat value of plantations could be enhanced by increasing the area managed under alternative systems to clear-felling, such as ‘continuous cover’ and/or non-intervention natural reserves.  相似文献   

15.
Abstract. We studied gradients in field layer vegetation across ecotone‐type borderlines between 12 ancient woodlands and adjacent secondary deciduous woodlands on former arable land. The aim of the study was to determine how distance from the borderline influences species distributions as compared with soil factors and degree of canopy closure. Correspondence Analysis showed that distance from the borderline is closely related to the first ordination axis at all study sites. Canonical Correspondence Analysis with variation partitioning revealed that distance from the borderline was the single most important factor in explaining vegetation variation. In general, the results suggest the following order of decreasing importance: Distance from the borderline < Soil reaction < Soil nitrogen < Soil moisture < Canopy cover. However, the sum of soil variables, as estimated by weighted averages of Ellenberg indicator values for moisture, reaction and nitrogen, accounted for as much as ca. 50–70% of the total variation explained by environmental variables. Important gradients in field layer vegetation are due to a decrease in typical woodland species and an increase in other species with increasing distance from the ancient woodland. The results suggest dispersal limitation of woodland species as an important determinant of secondary forest succession. However, the importance of distance to species distributions decreases with increasing stand age as most woodland species gradually colonize the recent woodlands. After 70 yr, ca. 50 % of the woodland species present at a site showed complete colonization within 50 m from the ancient woodland border.  相似文献   

16.
Effect of site history on forest plant and insect communities was studied by comparing afforestations on former agricultural land with reafforestations on ancient woodland sites. Vascular plants, mosses, true bugs, lacewings and saproxylic beetles were surveyed at 18 young broadleaved forest sites dominated by oak (Quercus robur), established between 1986 and 1994 in three different growth regions in Bavaria, Germany. Two strata, near ground level and the canopy, were sampled. Compared to woodland reafforestations greater species density and abundance of plants and true bugs were observed in field layer of afforestation sites. Proportion of forest species among plants and true bugs was however significantly lower in afforestations than on ancient woodland sites. In the canopy, zoo-phytophagous true bugs were significantly better represented in afforestations and zoophagous true bugs in reafforestations. Saproxylic beetles, especially inhabitants of old dead wood, were species-poor in afforestations. Results indicate that site history affects both producer and consumer communities in multiple ways, even 20 years after afforestation of former agricultural land. However, afforestations adjacent to existing forest stands can be regarded as valuable to nature conservation in effectively extending forest habitats. Investment in such afforestation therefore represents more than just an agricultural subsidy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The potential long‐term influences of mesobrowsers versus those of savannah elephants on woodland dynamics have not been explored. This may be a critical omission especially in southern African savannahs, where efforts to preserve existing woodlands are typically directed at elephant management. We describe a simple browse–browser model, parameterized from an extensive review of the literature and our own data, including quantitative assessment of impala impact, from the study site, iMfolozi Park, South Africa. As there is a paucity of species‐specific demographic data on savannah woody species, we modelled, in a novel approach, functional groups of plant species typical of Acacia woodlands. Outputs suggest that over the long term (100 years), low‐to‐moderate densities of impala will have a similar impact on woodland structure, in terms of density of adult trees, as low‐to‐moderate densities of elephant. Further, the outputs highlight the apparently strong synergistic effect impala and elephant impacts combined have on woodland dynamics, suggesting that reduction or removal of either impala or elephant will radically reduce long‐term destruction of savannah woodlands. Recorded changes in adult tree numbers in iMfolozi broadly supported the model's outputs.  相似文献   

18.
Questions: 1. How big is the difference in the herbaceous layer composition between flooded and unflooded stands? 2. Are there species or species groups which have an affinity to ancient vs. recent forests in stands with different water regimes? 3. Are patterns of life history traits different between flooded and unflooded stands as well as between ancient and recent forests in stands with a different water regime? Location: Floodplain forests in the Middle Elbe region and district of Leipzig, Central Germany. Location: The herbaceous layer was studied in randomly selected quadrats of 9 m2 in 2000 and 2001. Six ancient (nplot=59) and six adjacent recent forests (nplot=108) were investigated in flooded stands as well as three ancient (nplot=41) and three recent forests (nplot=70) in stands that have not been flooded for 50 years. The association of single species, species groups and life history traits were statistically tested for flooded vs. unflooded stands and for ancient vs. recent forests. Results: Interruption of flooding caused a complete species turnover in the herbaceous layer composition. Whereas in the still flooded stands typical alluvial species prevail, species composition in stands without flooding for 50 years showed a closed relation to the Stellario‐Carpinetum. Six herbaceous species in the flooded and five in the unflooded stands showed a preference for ancient forests. Only one species in the flooded and six herbaceous species in the unflooded stands are significantly associated with recent forests. Life history traits differ between flooded and unflooded stands but are similar in ancient and recently flooded stands, while unflooded ancient forests have more geophytes and myrmecochorous species than recent forests. Conclusions: The specificity of species composition in floodplain forests can only be maintained by regular flooding. Interruption of inundations lead to differences in the patterns of species composition and life history traits between ancient and recent forests.  相似文献   

19.
Spatial and temporal patterns of riverine woodlands in arid regions of Africa are poorly documented despite their considerable conservation value. We studied 1540 ha of riverine woodland in the lower Turkwel River floodplain, Kenya, between 1990 and 1998. Forty‐one woodland patches were mapped and their soil physical and chemical characteristics, tree species diversity, woody cover, tree density, wood volume and woodland regeneration were determined. The riverine woodland comprised nine vegetation types and a total of 14 woody species. Woodland patch mosaics were associated with microtopographical features and selected soil attributes. The most important woody species were Hyphaene compressa H. Wendl., Acacia tortilis (Forssk.) Hayne and Cadaba rotundifolia Forssk. The exotic Prosopis chilensis (Mol.) St. was invading parts of the riverine woodland. Overall, woody species diversity was low compared to similar riverine woodlands in East Africa. Tree density, wood volume and woody plant regeneration declined over the 8‐year study period, while woody cover was unchanged. Reduced tree density, wood volume and regeneration of woody species might be linked to changes in river flood patterns following the impoundment of the Turkwel Gorge Dam. It is suggested that spatially heterogeneous and temporally stochastic regeneration events, together with occasional tree mortality caused by channel abandonment, create the complex pattern of woodland patches in the lower Turkwel River floodplain. The mapped woodland patches may serve as monitoring units, which in future could reveal the interplay between changes in flooding patterns as a result of dam impoundment, anthropogenic disturbance and the well‐being of the riverine woodlands.  相似文献   

20.
Agricultural landscapes generally include not only crop fields but also semi-natural habitats. In Japan, such a mixed rural landscape is called “satoyama.” Although ground beetles are potential predators of pests, the environmental factors that determine their distribution in Japanese rural landscapes have not been fully elucidated. To understand the effects of distance from woodland edges, soil moisture, and weed height on assemblages of carabid beetles, we examined the number of adult beetles in pitfall traps placed in a satoyama landscape in the lowlands of western Honshu, Japan. Our results show that the carabid species could be largely differentiated into woodland, intermediate, and open-land species. The “intermediate species” group includes species that depend on woodland or woodland edges for at least part of their life cycles. Paddy fields must have long provided semi-natural habitats that complement those in natural grasslands and wetlands for open-land beetles that prefer wet conditions. Weeds can also increase the abundance of some intermediate and woodland species; thus, the arrangement of such landscape elements as woodlands and paddies can determine the species richness and abundance of ground beetles in agricultural fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号