共查询到20条相似文献,搜索用时 15 毫秒
1.
The Eume woods in northwest Spain are an important refuge for a number of endangered ferns, including Culcita macrocarpa, Cystopteris diaphana, Dryopteris aemula, Dryopteris guanchica, Hymenophyllum tunbrigense and Woodwardia radicans. Because some of these species are inconspicuous or difficult to identify in the field, we attempted to develop simple floristic criteria to identify sites important or potentially important for these species (high-value sites). Having drawn up field-layer vascular plant inventories for 44 plots in the study area, we considered two major strategies. Under strategy 1, we looked for those conspicuous species which best discriminated between plots containing the endangered species (current-high-value plots) and all other plots. Under strategy 2, we first carried out a global plots-by-species classification using indicator species analysis (Hill et al. 1975) and then looked for those conspicuous species which best discriminated between groups containing current-high-value plots and all other groups. For our data set, the second strategy proved more effective. The best criterion identified was If two or more of Luzula sylvatica, Viola riviniana and Rubus spp. are present, then that plot is high-value. We include a listing of a BASIC program for the discriminant analysis algorithm, which we consider to have a number of potential applications in vegetation science and biogeography. 相似文献
2.
Summary Riverine forests to the south of Bruges were sampled according to the principles of the Braun-Blanquet approach. Cartographic data allowed a distinction between old (pre-1775) and recent (planted after 1775) woodland. Using a chi-square criterion and/or a Fisher exact probability test, the association of species with the two historical types of woodland was tested. Corylus avellana, Lamium galeobdolon, Primula elatior, Anemone nemorosa, Deschampsia cespitosa and Thamnium alopecurum are confined to ancient woodland. Glechoma hederacea, Prunus padus, Lysimachia nummularia, Ribes rubrum and Lychnis floscuculi have a significant affinity for recent woods.R-type prineipal components analysis produced an effective ordination of species and relevés. Interpretation of the scatter diagrams was performed using indicator values for the species and some environmental parameters for the relevés. Two major gradients were detected: the first one is the coenocline from wet, basic clay soils towards drier, more acidic, sandy soils. Anthropogenic dynamics, through the general management which effects the micro-climate in the wood, particularly the relative light intensity, has been recognized as the second ecological parameter.The potential natural vegetation of the valleys is thus determined primarily by soil texture and soil moisture, and secondarily by former land use (and age). It takes at least 200 years before old woodland species start to colonize recent woodland.We are much indebted to Prof. Dr. P. Van der Veken for his criticism of the manuscipt and to B. Kuziel en G. Dujardin for reviewing the English text.Nomenclature follows De Langhe et al. (1978) for vascular plants and Margadant (1973) & Margadant & During (1973) for bryophytes.Dedicated to the memory of Dr. Ir. G. Sissingh (1912–1979).This study was supported by a grant from the Instituut tot aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw and since 1 October 1979 from the Nationaal Fonds voor Wetenschappelijk Onderzoek. 相似文献
3.
Abstract. An integrated analysis of the colonization patterns of forest plant species was carried out in a 34‐ha, mixed deciduous forest in northern Belgium. First, we sought to describe the relationships between land use history and environmental conditions. Land use history and soil type were related and negative correlations between pH and secondary forest age were found. The density of the shrub layer increases with secondary forest age. Litter quantity and cover of Urtica dioica were mainly indirectly influenced by land use history. Litter starts accumulating at low pH values and high shrub density and Urtica dioica grows vigorously on nutrient enriched soils where much light can reach the ground. Next, the importance of these human‐altered environmental conditions for the colonization of forest plant species was assessed relative to the importance of dispersal limitation. Therefore, the distribution of 16 forest species was mapped and species‐specific spatio‐temporal isolation measures were calculated. The analysis revealed that the colonization patterns of the slowly colonizing species (i.e. ‘ancient forest plant species’) are best explained by a combination of spatio‐temporal isolation, soil type, pH and the (non‐)cover of Urtica dioica. By contrast, spatio‐temporal isolation was never a limiting factor for good colonizing forest species. Our results suggest that colonization of ‘ancient forest plant species’ is hampered by a combination of dispersal‐ and recruitment limitation and that the relative importance of both factors is species‐specific. 相似文献
4.
Abstract. The habitat type system developed by R. Daubenmire has been widely adopted throughout the western United States. Habitat types result from a site classification derived from the classification of late seral plant communities using selected indicator species. It has been suggested that the classification of late successional vegetation used to derive habitat types does not substantially differ from phytosociological classification in the sense of Braun‐Blanquet approach, and that habitat types can be adopted in their present form into floristically‐based vegetation classifications. Despite the many commonalities between the two systems, however, the classification methods, and specifically the use of indicator species in the habitat type system, yield a significantly different classification than the phytosociological approach. This is demonstrated in the comparison of a habitat type classification with the results of a recent phytosociological classification of forest vegetation in the northern Salish Mountains of Montana. 相似文献
5.
Abstract. Recently established forests are commonly characterized by an impoverished understorey. Restoration is mostly based on spontaneous secondary succession, but little is known about the time period needed to achieve a community species pool with species composition equal to that of ancient forests. Vegetation in transects of 197 plots in 13 recent forest stands contiguous to the Meerdaalwoud ancient forest complex was surveyed. The recent forest stands ranged in age from 36 to 132 yr. The community species pool was described with an ecological, functional and phytosociological approach and based on groups derived from a CCA. Differences in community species pool between age classes of recent forest stands were analysed. During establishment of a new forest competitive species, forest edge species and species with high Ellenberg values for light and nitrogen and a more persistent seed bank will dominate the understorey. After 90 yr of succession the cover by these species decreases and reaches equal values to ancient forest after ca. 105 yr. A large number of forest species will be able to colonize the forest in less than 90 yr. Some typical forest species, however, have very low colonization rates and still have low cover in recent forest more than 105 yr old, so that complete restoration of the understorey requires a time period of over a century. Anthropogenic introduction of forest plant species may reduce the time required for ancient forest vegetation equality. 相似文献
6.
Abstract. The first 10 yr of old-field successional dynamics on the Argentine Inland Pampa were studied on a series of adjacent plots established consecutively between 1978 and 1989. We examined differences in species abundance patterns among plots in order to detect the spatial and temporal variability of succession. Perennial grasses steadily increased in cover and replaced the dominant annual species after 5 yr. Pioneer dicots persisted in older seral stages with 20 — 23 species/plot. Overall, exotic species (mostly the grasses Lolium multiflorum and Cynodon dactylon) contributed much to the plant cover in these communities. Native grasses comprised 45 % of total cover at years 7 — 10 of succession, but occurred with less than 7 species/plot. Substantial variation was found in the successional pathway, which reflected the particular sequence from annual forbs to short-lived and perennial grasses in the various plots. The course of succession was apparently influenced by a 2-yr period of unusually high rainfall. Deyeuxia viridiflavescens, a native perennial grass virtually absent before the wet period, spread over the study area and dominated seral communities for 3 yr, irrespective of plot age. Climatic conditions thus affected the successional turnover of life forms by increasing the rate of colonization by perennial grasses. We further point out the constraints imposed on secondary succession by the life histories of ‘available’ species. 相似文献
7.
Milan Chytrý 《应用植被学》1998,1(2):177-188
Abstract. The concept of mapping potential replacement vegetation (PRV) is proposed as a parallel to potential natural vegetation (PNV). Potential replacement vegetation (PRV) is an abstract and hypothetical vegetation which is in balance with climatic and soil factors currently affecting a given habitat, with environmental factors influencing the habitat from outside such as air pollution, and with an abstract anthropogenic influence (management) of given type, frequency and intensity. For every habitat, there is a series of possible PRV-types corresponding to the different anthropogenic influences, e.g. grazing, mowing, trampling or growing cereals. The PRV-concept is especially useful in large-scale mapping (scales > 1 : 25 000) of small areas where replacement vegetation is the focus of attention for managers and land-use planners, for example in nature reserves where the aim is conservation of replacement vegetation managed in a traditional way, or in restoration ecology where the concept may be used for defining restoration goals and evaluating the success of restoration efforts. At smaller scales, PRV-mapping may be useful for revealing the biogeographical patterns of larger areas which may be different from the corresponding PNV patterns, because replacement vegetation and natural vegetation may respond to environmental gradients at different scales. An example of medium-scale PRV-mapping through the coincidence of diagnostic species of vegetation types, based on species distribution grid data, is presented. In cultural landscapes, the advantage of using the PRV-concept instead of PNV is its direct relationship to the replacement vegetation. In the habitat mapping with respect to the replacement vegetation, the PRV concept yields more valuable results than the mapping of actual vegetation, as the latter is strongly affected by spatially variable anthropogenic influences which may be largely independent from climatic and soil factors. 相似文献
8.
Abstract. A competitive effect hierarchy for 15 Namaqualand pioneer plant species was established by using the mean mass of the phytometer (Dimorphotheca sinuata) when grown in combination with itself and 14 other species. There were no clear groupings of species in the hierarchy. This competitive hierarchy (gradient) indicated which species are strong competitors (resulting in a low phytometer mass) with D. sinuata and which species are weak competitors (resulting in a high phytometer mass). Each plant species has a certain combination of plant traits which determines its life history strategy and competitive ability. Regressions of various plant traits (measured on plants grown singly) against phytometer biomass indicated which traits were significantly correlated. The traits, most being size-related, were: maximum shoot mass, total mass, stem mass, reproductive mass, leaf area, stem allocation, specific leaf area (SLA), vegetative height × diameter, leaf area ratio (LAR); and mean number of days to flower initiation. A forward stepwise multiple regression of the significant traits was used to determine an equation to predict competitive effect. 相似文献
9.
Carla Grashof-Bokdam 《植被学杂志》1997,8(1):21-28
Abstract. For 312 forest patches on sandy soils in the Netherlands, effects of fragmentation are studied of forest habitat in the past on the present occurrence of forest plant species. Using regression techniques, the numbers of forest edge, interior, zoochorous and anemochorous species, as well as occurrence of 24 individual species were related to patch area and connectivity measures. Connectivity was defined as the amount of forest habitat around patches within three zones up to 1000 m. Plant categories were distinguished by habitat type and dispersal mechanism. The results showed that number of total species and number of species of all habitat and dispersal categories increased with area. The occurrence of ten individually studied species were also positively related to area. Most of them were interior species. The number of zoochorous species increased with increasing connectivity. Also occurrence of ten individually studied species were affected by connectivity. Interior zoochorous species showed the highest percentage of affected species. The relationship of interior, animal-dispersed plants to connectivity can be explained by the limited distances covered by their dispersal agents (forest birds and ants) in a non-forest habitat. Also, some anemochorous plants appeared to be affected by connectivity, especially those with heavy seeds and potentially short distance dispersal. As not all species within a certain dispersal or habitat category react similar to area or isolation, it is suggested that differences in underlying processes of fragmentation such as local extinction and colonization need more focus. 相似文献
10.
Abstract. This study examines whether competition between the unpalatable grass Hilaria mutica and three co‐occurring, palatable grasses in a Texan mixed prairie is altered by non‐selective or selective defoliation. In this four‐year study, plants were grown in monoculture or in combination with the unpalatable Hilaria in a replacement design. Under no defoliation, the unpalatable Hilaria had a lower growth potential than Bouteloua curtipendula and Nassella leucotricha that were of equal stature, and produced only as much as the shorter grass, Buchloe dactyloides. Bouteloua had the highest growth potential under no‐defoliation and was defoliation tolerant, except when defoliated at ground level. Nassella was more productive than the unpalatable Hilaria, since the ability to grow earlier in the year enabled it to compete successfully with Hilaria. These results indicate that with adequate deferment Bouteloua and Nassella should compete successfully with Hilaria and Buchloe should be able to maintain itself in the presence of Hilaria. Under non‐selective defoliation, Hilaria was able to compete successfully only with Buchloe. Hilaria was sensitive to defoliation, despite being rhizomatous, and competed less successfully with Buchloe after non‐selective defoliation than it did when not defoliated. This indicates that the management practice of burning and stocking heavily with livestock until Hilaria is avoided, resulting in non‐selective defoliation, will not cause Hilaria to be more competitive with the more palatable Bouteloua, Buchloe or Nassella. Hilaria was able to compete most successfully under selective defoliation when it was not defoliated. Under selective defoliation, by avoiding herbivory, Hilaria is able to compete strongly with at least Buchloe and Nassella. The reaction of Nassella and Buchloe to selective defoliation indicates that they may have been displaced by Hilaria in the past. In contrast, under the short‐term and non‐limiting growth conditions of this study, Bouteloua competed successfully with Hilaria even under selective defoliation. These results do not rule out the possibility that, through selective defoliation, Hilaria may have displaced other grasses including Bouteloua in the past. 相似文献
11.
Abstract. The fragmentation and deterioration of old‐growth forest habitat by modern forestry have become a major threat to species diversity in Fennoscandia. In order to develop a conservation strategy for the remaining diversity it is essential to identify the existing diversity and to develop appropriate conservation and monitoring programs. For these purposes indicators of conservation value for administrative prioritization are required. This study examines the predictability of plant and fungal species richness on two spatial scales on 46 isolated old‐growth forest islands (0.17 ‐ 12 ha) in a forest‐wetland mosaic. We explore (1) to what extent area, isolation and stand structure variables can explain the variation in species richness and (2) if richness patterns of individual species groups correlate. Isolation showed no relation to species richness. Area explained 50 ‐ 70% of the variation in total species richness and was positively related to the density of crustose lichens and Red‐list species in island interiors. Stand structure variables explained 28 ‐ 66% of the residual variation in total species richness after controlling for island size, and 15 ‐ 73% of the variation in density of species in island interiors. The highest predictability of species richness was found among substrate‐specific fungi and Red‐list species. Different stand structure variables were found to explain richness in the different species groups, and only among a few species groups species richness correlated. Thus, species richness of one single species group is unlikely to be a good indicator for total biodiversity. The results show that measurements of stand size and stand structure variables may be a strong complementary tool, and sometimes a substitute to extensive species inventories when one aims to estimate and monitor plant and fungal species diversity in old‐growth Picea abies forests. 相似文献
12.
Abstract. Forest patches in central Belgium were inventoried twice for the presence or absence of forest plant species to study the effects of age and distance on species composition. All forests in the study area were subdivided based on their land use history. To avoid effects of autocorrelated environmental characteristics on species composition, habitat homogeneity was indirectly investigated using a TWINSPAN classification of the vegetation data. Two major habitats (alluvial and non‐alluvial forests) were distinguished and analysed separately. Patterns of species composition were investigated at the landscape level using Mantel tests. Species composition similarity measures were calculated between all pairs of fragments based on the floristic data. A highly significant correlation was found between species composition similarity and inter‐patch distance. Difference in age, which we used as a measure for habitat quality, was less important in explaining species composition patterns. The effects of spatial configuration became significant when difference in age was accounted for, and a partial correlation was calculated between inter‐patch distance and species composition similarity. Different results were found for alluvial and non‐alluvial forest types. Alluvial forests were more influenced by the spatial configuration than the non‐alluvial. For the non‐alluvial forest type effects measured with the difference in age between forest fragments obscured the effects of inter‐patch distance. Based on our findings we suggest that species composition is not only internally generated, but external processes such as differential colonization caused by varying degrees of isolation may be of overriding importance. 相似文献
13.
Abstract. We studied the restoration success of flood plain meadows in the northern Upper Rhine valley, where between 1988 and 1992, 35 ha of arable land was converted into grassland and subsequently managed for nature conservation. Remnant populations of typical alluvial meadow species were found in old meadows and along drainage ditches that dissect the whole area. We analysed the site conditions and phytosociological relevés in old and new meadows. Small differences in site parameters between old and new meadows contrasted with a clear floristic differentiation between the two meadow types. The vegetation of old meadows was much more differentiated along prevailing environmental gradients than the vegetation of new meadows. Despite the favourable site conditions for the re‐establishment of species‐rich meadows on the former arable land, restoration success was limited to the vicinity of remnant stands. In contrast to old meadows, indicator species of new grassland were still typical species of regularly disturbed ruderal and arable habitats, often capable of building up a persistent seed bank. The precise mapping of 23 target species revealed that even wind dispersal predominantly leads to re‐establishment in the close circumference of parent plants. We found no indication that regular flooding, hay‐making and autumnal grazing had an impact on recolonization of newly created grassland. Even under favourable conditions for the re‐establishment of target species, restoration success in alluvial meadows proved to be strongly dispersal limited. We discuss the implications of our findings for future restoration management in grasslands. 相似文献
14.
Abstract. Grass and herb cover, and woody plant densities were measured on 25 native and 25 exotic grassland plots in southeastern Arizona between 1984 and 1990. At least 40 yr previously, the exotic plots had been seeded with two species of lovegrasses (Eragrostis spp.) native to southern Africa. A 1987 wildfire burned 11 native and 11 exotic plots. The fire reduced cover of both native and African grasses for two post-fire growing seasons. Herb cover as a whole increased after the fire for 2 yr, although there were important differences among species. One of two dominant shrubs (Haplopappus tenuisectus) was killed by the fire, while the other (Baccharis pteronioides) was little affected. Mesquite trees (Prosopis juliflora) were killed to the ground by the fire, but 62 of 66 trees had re-sprouted to an average 48% of pre-burn height by 1990. Native and exotic grasses appeared equally tolerant of fire, probably because both evolved in fire-type ecosystems. There was no evidence that fire can be used to permanently restore the diverse native flora to species-poor plantations of the South African exotics. 相似文献
15.
Abstract. In the former brown coal mining area of eastern Germany, now scheduled as a nature conservation area, an analysis of the spatial distribution of vegetation was considered as an important tool in landscape planning. Therefore a comprehensive vegetation survey by means of satellite imagery (Landsat-TM), airborne imagery (CASI), and ground-based methods, notably habitat mapping and vegetation sampling was carried out. With respect to the scales of resolution the classification results of the four methods are, to a certain degree, comparable. Differences in the outcome can be ascribed to the fact that methods of low resolution result in a discrete array of polygons whereas methods of high resolution depict a mosaic structure with an underlying, continuously changing gradient. Provided that the biological meaning of the remote sensing classification is known, a shift from single vegetation patterns to the landscape scale will be possible. Neither satellite nor airborne imagery is restricted to the purpose of mapping but may also serve for vegetation classification itself. 相似文献
16.
Evan Weiher Adrie van der Werf Ken Thompson Michael Roderick Eric Garnier Ove Eriksson 《植被学杂志》1999,10(5):609-620
Abstract. Ecologists need a common language of plant traits in order to make comparisons across regions and scales, pool data, and maximize the utility of the data. To develop such a set of traits we began with the primary challenges faced by plants: dispersal, establishment, and persistence in order to identify fundamental traits. Most of these traits are hard to measure, but advances in comparative ecology have suggested a number of easy to measure analogs. Unfortunately, some of the fundamental traits have no simple analog. The common core list includes: seed mass, seed shape, dispersal mode, clonality, specific leaf area, leaf water content, height, above-ground biomass, life history, onset of flowering, stem density, and resprouting ability. Most of the traits can be measured quantitatively, but several traits on the list must still be measured qualitatively due to logistical problems or lack of an easy analog. Key problem areas include: dispersal ability, capacity for vegetative spread, germination, palatability, plasticity, and all the various below-ground traits. Comparative studies need to address these problem areas. The common core list is suggested as a common starting point for studies of functional ecology. The idiosyncrasies of regional floras and specific research agendas will dictate which traits can be ignored and those that need to be added. 相似文献
17.
Question : Is Opuntia stricta more frequent, and its patches larger, under trees suitable for baboon roosting? If so, does it mean that baboons are major dispersal agents and that plants established under these trees are important foci of Opuntia stricta spread? Location: Skukuza, Kruger National Park, South Africa. Method: We surveyed an area invaded by Opuntia stricta in the Skukuza region of KNP. The survey included plots under potential baboon roosting trees,plots under trees unlikely to support baboons,and paired randomly located open sites. Results: The null hypothesis ‐tree‐Opuntia spatial independence – can be rejected for Acacia nilotica, but not for Spirostachys africana. Opuntia plants are positively associated with Acacia trees suitable for baboon roosting. However, there is no significant difference between frequency of Opuntia under Acacia trees suitable and unsuitable for baboon roosting.It appears that all Acacia trees can serve as nurse trees for Opuntia. Compared to plots under Acacia trees, frequencies of old and robust Opuntia plants are significantly higher in open areas and under dead trees. Conclusions: While baboons may be responsible for long distance Opuntia dispersal (over km),their role is not detectable at a local scale.On the other hand, elephants seem to contribute substantially to the local vegetative propagation of this species. Opuntia establishment and growth are more influenced by micro‐habitat than previously thought. 相似文献
18.
Abstract. We described 38 relictual old‐growth stands – with data on the mortality, regeneration, floristic richness, fuel load and disease incidence in our study area in the Tahoe Basin of California and Nevada. The stands are within the lower and upper montane zones (1900–2400 m a.s.l.) and they are rare, occupying < 2% of the land in the Basin's watershed. Correlation matrices and ANOVAs of forest types and conifer species with environmental gradients revealed significant relationships with elevation, distance east of the Sierran crest, slope aspect, annual precipitation, date of complete snow melt, litter depth and degree of soil profile development. Pathogens, parasites and wood‐boring insects were present on 23% of living trees; 16% of all trees were dead. We compared these stands to a reconstruction of pre‐contact Basin forests and to ecologically analogous old‐growth forests of Baja California that have never experienced fire suppression management. Currently, overstorey trees (> 180 yr old) in the Basin stands have ca. 33% cover, 54 m2.ha‐1 basal area and 107 individuals.ha‐1, values very similar to reconstructions of pre‐contact Basin forests and to modern Baja California forests. Understorey trees (60–180 yr old), however, are several times more dense than historic levels and species composition is strongly dominated by A. concolor, regardless of the overstorey composition. The ratio of Pinus: Abies has increased – and the age structure of extant stands predicts that it will continue to increase – from approximately 1:1 in pre‐contact time to 1:7 within the next century. Disease incidence and mortality in Baja forests were lower. Although we quantitatively defined current Basin old‐growth forests – in terms of stand structure – we realize that our definition will differ from that of both past and future old‐growth forests unless management protocols are changed. 相似文献
19.
Jerker Idestam‐Almquist 《植被学杂志》2000,11(3):425-432
Abstract. Persistence and colonization of submersed aquatic plant species were studied in permanent plots (20 cm × 20 cm) at three shallow sites adjacent to Askö island, in the northern Baltic Sea. The study started in 1991 at two of the sites, in 1992 at a third site and continued until 1997. Two major weather‐induced disturbances occurred during the study: a long, stormy period during a mild winter and a cold winter with extreme low water levels. The stormy period caused a large loss of species from plots (95 ± 5% SE) at the most wave‐exposed site, resulting in a low species number per plot (0.8 ± 0.2) the following summer. During the three following years the mean species number increased to 3.6 ± 0.2. The cold winter caused high species turnover and increased species number per plot at the two most wave‐exposed sites. The species turnover at the sheltered site was highest in the two years with low water level in May, possibly due to increased waterfowl herbivory. Annuals, loosely anchored and highly reproductive species had significantly higher plot colonization rates and lower persistence than perennials, well‐anchored species and species with none or low reproduction. The extent of lateral growth had no significant effect on colonization or persistence. Although these disturbances have a large effect on the dynamics, species mobility was also high in other years. Relative to other, similar, studies in terrestrial vegetation mean persistence in plots was remarkably low and mean mobility and species turnover rates were very high. 相似文献
20.
Abstract. In order to stress successes in restoration and conservation of species, regionally, nationally or globally, a new instrument has been developed, the ‘Blue Lists’, ‘registers of those Red List species that show a durable overall stabilization or increase of abundance in the region (nation, world) considered’. ‘Blue Data Books’ include additional information on the ecology, conservation, and promotion of the species. For describing the overall change of abundance of every individual species six categories are defined. Furthermore, the effects of nature conservation techniques (NCT) on a species are evaluated using six additional categories. In a test area of 3 431 km2 in northern Switzerland, information was compiled on the change in abundance of the 708 Red List species of higher plants (spermatophyta) over the last 10-15 yr. Overall, 33% of these species showed a stabilization or even increase in abundance; these are Blue List species; ca.20% showed a decline and for almost 50% the change in abundance is not known. NCTs have been successfully applied to more than 50 % of all the species, at least locally. For about a further 30%, the required NCTs are known but have not yet been tried out. If these techniques were applied on a large scale, the decline of very many species in the test area could be stopped. 相似文献