首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The underlying neural causes of the differences between nocturnal and diurnal animals with respect to their patterns of rhythmicity have not yet been identified. These differences could be due to differences in some subpopulation of neurons within the suprachiasmatic nucleus (SCN) or to differences in responsiveness to signals emanating from the SCN. The experiments described in this article were designed to address the former hypothesis by examining Fos expression within vasopressin (VP) neurons in the SCN of nocturnal and diurnal rodents. Earlier work has shown that within the SCN of the diurnal rodent Arvicanthis niloticus, approximately 30% of VP-immunoreactive (IR) neurons express Fos during the day, whereas Fos rarely is expressed in VP-IR neurons in the SCN of nocturnal rats. However, in earlier studies, rats were housed in constant darkness and pulsed with light, whereas Arvicanthis were housed in a light:dark (LD) cycle. To provide data from rats that would permit comparisons with A. niloticus, the first experiment examined VP/Fos double labeling in the SCN of rats housed in a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase. Fos was significantly elevated in the SCN of animals sacrificed during the light compared to the dark phase, but virtually no Fos at either time was found in VP-IR neurons, confirming that the SCN of rats and diurnal Arvicanthis are significantly different in this regard. The authors also evaluated the relationship between this aspect of SCN function and diurnality by examining Fos-IR and VP-IR in diurnal and nocturnal forms of Arvicanthis. In this species, most individuals exhibit diurnal wheel-running rhythms, but some exhibit a distinctly different and relatively nocturnal pattern. The authors have bred their laboratory colony for this trait and used animals with both patterns in this experiment. They examined Fos expression within VP-IR neurons in the SCN of both nocturnal and diurnal A. niloticus kept on a 12:12 LD cycle and perfused 4 h into the light phase or 4 h into the dark phase, and brains were processed for immunohistochemical identification of Fos and VP. Both the total number of Fos-IR cells and the proportion of VP-IR neurons containing Fos (20%) were higher during the day than during the night. Neither of these parameters differed between nocturnal and diurnal animals. The implications of these findings are discussed.  相似文献   

2.
Adrenalectomy-induced hypophagia is associated with increased satiety-related responses, which involve neuronal activation of the nucleus of the solitary tract (NTS). Besides its effects on the pituitary–adrenal axis, corticotrophin-releasing factor (CRF) has been shown to play an important role in feeding behaviour, as it possesses anorexigenic effects. We evaluated feeding-induced CRF mRNA expression in the paraventricular nucleus (PVN) and the effects of pretreatment with CRF2 receptor antagonist (Antisauvagine-30, AS30) on food intake and activation of NTS neurons in response to feeding in adrenalectomised (ADX) rats. Compared to the sham group, ADX increased CRF mRNA levels in the PVN of fasted animals, which was further augmented by refeeding. AS30 treatment did not affect food intake in the sham and ADX + corticosterone (B) groups; however, it reversed hypophagia in the ADX group. In vehicle-pretreated animals, refeeding increased the number of Fos and Fos/TH-immunoreactive neurons in the NTS in the sham, ADX and ADX + B groups, with the highest number of neurons in the ADX animals. Similarly to its effect on food intake, pretreatment with AS30 in the ADX group also reversed the increased activation of NTS neurons induced by refeeding while having no effect in the sham and ADX + B animals. The present results show that adrenalectomy induces an increase in CRF mRNA expression in the PVN potentiated by feeding and that CRF2 receptor antagonist abolishes the anorexigenic effect and the increased activation of NTS induced by feeding in the ADX animals. These data indicate that increased activity of PVN CRF neurons modulates brainstem satiety-related responses, contributing to hypophagia after adrenalectomy.  相似文献   

3.
《Hormones and behavior》2010,57(5):532-538
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

4.
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

5.
To characterize the participation of vasopressin (AVP) and oxytocin (OT) in hypothalamus-pituitary-adrenal regulation after adrenalectomy (ADX), we evaluated corticosterone, ACTH, AVP and OT plasma concentrations and AVP and OT content of the paraventricular nucleus (PVN) at different periods (3 h, 1, 3, 7 and 14 days) in sham or ADX rats under basal conditions and after immobilization stress. ADX animals showed undetectable corticosterone levels, while sham animals showed a marked increase in corticosterone and ACTH 3 h after surgery, then lowering to basal control levels. ADX rats showed high basal ACTH levels with a triphasic response without changes after immobilization. After three hours, the ADX group showed higher OT levels than the sham group. OT was increased after immobilization stress in sham and ADX groups. AVP plasma levels did not change throughout the basal or stress studies in either group. There was a decrease in hypothalamic AVP content 1 and 3 days after ADX under basal and stress conditions. Plasma osmolality showed a significant decrease in the ADX group at 3, 7, and 14 days. In conclusion, there are different pituitary-adrenal axis set points after removal of the glucocorticoid negative feedback. The role of vasopressinergic and oxytocinergic neurons in the ACTH secretion after ADX or immobilization stress appears to differ. Magnocellular AVP is unlikely to contribute to ACTH secretion in response to ADX or immobilization stress. On the other hand, OT is elicited by immobilization stress and might contribute to the ACTH secretion during short-term ADX.  相似文献   

6.
Glucocorticoids (GCs) are commonly reported to be immunosuppressive. Studies that support this involve the administration of synthetic GCs such as dexamethasone at high pharmacological doses and using in vitro assay systems that may have limited relevance to the role of GCs during normal in vivo immune responses. Therefore, the following experiments tested the conclusion that GCs are generally immunosuppressive. Adult male Sprague Dawley rats received adrenalectomy (ADX) or sham surgery. ADX rats were given either basal corticosterone (CORT) replacement in their drinking water (25 microg/ml) or no CORT. Rats were immunized with keyhole limpet hemocyanin (KLH), and blood samples were taken. ADX rats with no CORT replacement had reduced anti-KLH IgM and IgG responses compared with sham-operated controls. ADX rats that received basal CORT replacement had partially restored anti-KLH IgM, but still had suppressed anti-KLH IgG. Administration of GC receptor type I (RU28318) and type II (RU40555) receptor antagonists also reduced the anti-KLH IgM and IgG responses. ADX rats that received both basal CORT replacement and low dose injections of CORT on days 5 and 7 after KLH had anti-KLH IgG levels equal to those of sham-operated controls. Finally, the GC elevation 4-7 days after immunization may play a role in stimulating the IgM to IgG2a switch. GC receptor blockade reduced the anti-KLH IgG2a and splenic IFN-gamma, but not the anti-KLH IgG1, response. Given that IFN-gamma is an important regulator of the IgM to IgG2a switch, it is possible that the small rise in GC found 4-7 days after KLH facilitates IgG2a isotype switching.  相似文献   

7.
The negative feedback control of hypothalamic cortocotrophin releasing factor (CRF) and anterior pituitary proopiomelanocortin (POMC) by corticosteroids is well understood. However, less is known about the mechanisms that regulate POMC gene expression in the arcuate nuclei in the medial basal hypothalamus (MBH). Using a sensitive and specific S1 endonuclease protection assay, we have examined the effect of adrenalectomy on POMC mRNA in the rat MBH and pituitary. Our results show that adrenalectomy does not change POMC mRNA levels in the MBH at 7 or 14 days post surgery. The neurointermediate lobe of the pituitary was similarly unaffected by adrenalectomy, while in the anterior lobe, POMC mRNA increased 7-10 fold at both time points, effects that were prevented by dexamethasone treatment. We conclude that while POMC mRNA in the anterior lobe of the pituitary is regulated by plasma glucocorticoids, in the MBH and neurointermediate lobe, it is not.  相似文献   

8.
This article describes the phase response curve (PRC), the effect of light on Fos immunoreactivity (Fos-IR) in the suprachiasmatic nucleus (SCN), and the effect of SCN lesions on circadian rhythms in the murid rodent, Arvicanthis niloticus. In this species, all individuals are diurnal when housed without a running wheel, but running in a wheel induces a nocturnal pattern in some individuals. First, the authors characterized the PRC in animals with either the nocturnal or diurnal pattern. Both groups of animals were less affected by light during the middle of the subjective day than during the night and were phase delayed and phase advanced by pulses in the early and late subjective night, respectively. Second, the authors characterized the Fos response to light at circadian times 5, 14, or 22. Light induced an increase in Fos-IR within the SCN during the subjective night but not subjective day; this effect was especially pronounced in the ventral SCN, where retinal inputs are most concentrated, but was also evident in other regions. Both light and time influenced Fos-IR within the lower subparaventricular area. Third, SCN lesions caused animals to become arrhythmic when housed in a light-dark cycle as well as constant darkness. In summary, Arvicanthis appear to be very similar to nocturnal rodents with respect to their PRC, temporal patterns of light-induced Fos expression in the SCN, and the effects of SCN lesions on activity rhythms.  相似文献   

9.
In females of both spontaneously and induced ovulating species, pheromones from male conspecifics can directly stimulate GnRH neuronal activity, thereby inducing pituitary LH secretion and stimulating the onset of estrus. However, whether pheromones contribute to the steroid- or mating-induced preovulatory activation of GnRH neurons is less clear. Previous studies in the ferret, an induced ovulator, raised the possibility that olfactory cues contribute to the ability of genital-somatosensory stimulation to activate GnRH neurons in the mediobasal hypothalamus (MBH). In the present study the percentage of GnRH neurons colabeled with Fos-immunoreactivity (IR), used as a marker for neuronal activation, was investigated in the MBH of mated gonadectomized, estradiol-treated female ferrets in which both nares were occluded. In addition, the percentage of GnRH neurons colabeled with Fos-IR was examined in the MBH of gonadectomized, estradiol-treated female ferrets exposed to male bedding. Bilateral nares occlusion successfully blocked mating or odor-induced increments in Fos-IR in central olfactory regions, including the cortical and medial amygdala. By contrast, the percentage of GnRH neurons expressing Fos-IR did not differ between mated nares- and sham-occluded females. Exposure to male bedding alone failed to induce Fos-IR in MBH GnRH neurons. Thus, the mating-induced preovulatory activation of GnRH neurons in the female ferret's MBH appears to rely solely on genital-somatosensory as opposed to olfactory inputs.  相似文献   

10.
For humans and rodents, ingesting sucrose is rewarding. This experiment tested the prediction that the neural activity produced by sapid sucrose reaches reward systems via projections from the pons through the limbic system. Gastric cannulas drained ingested fluid before absorption. For 10 days, the rats alternated an hour of this sham ingestion between sucrose and water. On the final test day, half of them sham drank water and the other half 0.6 M sucrose. Thirty minutes later, the rats were killed and their brains immunohistochemically stained for Fos. The groups consisted of controls and rats with excitotoxic lesions in the gustatory thalamus (TTA), the medial (gustatory) parabrachial nucleus (PBN), or the lateral (visceral afferent) parabrachial nucleus. In controls, compared with water, sham ingesting sucrose produced significantly more Fos-positive neurons in the nucleus of the solitary tract, PBN, TTA, and gustatory cortex (GC). In the ventral forebrain, sucrose sham licking increased Fos in the bed nucleus of the stria terminalis, central nucleus of amygdala, and the shell of nucleus accumbens. Thalamic lesions blocked the sucrose effect in GC but not in the ventral forebrain. After lateral PBN lesions, the Fos distributions produced by distilled H(2)O or sucrose intake did not differ from controls. Bilateral medial PBN damage, however, eliminated the sucrose-induced Fos increase not only in the TTA and GC but also in the ventral forebrain. Thus ventral forebrain areas associated with affective responses appear to be activated directly by PBN gustatory neurons rather than via the thalamocortical taste system.  相似文献   

11.
After confirming that adrenalectomy per se does not affect skeletal muscle protein synthesis rates, we examined whether endogenously produced glucocorticoids modulate the effect of physiological insulin concentrations on protein synthesis in overnight-fasted rats 4 days after either a bilateral adrenalectomy (ADX), ADX with dexamethasone treatment (ADX + DEX), or a sham operation (Sham; n = 6 each). Rats received a 3-h euglycemic insulin clamp (3 mU. min(-1). kg(-1)). Rectus muscle protein synthesis was measured at the end of the clamp, and the phosphorylation states of protein kinase B (Akt), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and ribosomal protein S6 kinase (p70(S6K)) were quantitated before and after the insulin clamp. The basal phosphorylation states of Akt, 4E-BP1, and p70(S6K) were similar between ADX and Sham rats. Insulin significantly enhanced the phosphorylation of Akt (P < 0.03), 4E-BP1 (P = 0.003), and p70(S6K) (P < 0.002) in ADX but not in Sham rats. Protein synthesis was significantly greater after insulin infusion in ADX than in Sham rats (P = 0.01). Glucocorticoid replacement blunted the effect of insulin on Akt, 4E-BP1, and p70(S6K) phosphorylation and protein synthesis. In conclusion, glucocorticoid deficiency enhances the insulin sensitivity of muscle protein synthesis, which is mediated by increased phosphorylation of translation initiation-regulatory proteins.  相似文献   

12.
The influence of central vagal stimulation induced by 2h cold exposure or intracisternal injection of thyrotropin-releasing hormone (TRH) analog, RX-77368, on gastro-duodenal enteric cholinergic neuronal activity was assessed in conscious rats with Fos and peripheral choline acetyltransferase (pChAT) immunoreactivity (IR). pChAT-IR was detected in 68%, 70% and 73% of corpus, antrum and duodenum submucosal neurons, respectively, and in 65% of gastric and 46% of duodenal myenteric neurons. Cold and RX-77368 induced Fos-IR in over 90% of gastric submucosal and myenteric neurons, while in duodenum only 25-27% of submucosal and 50-51% myenteric duodenal neurons were Fos positive. In the stomach, cold induced Fos-IR in 93% of submucosal and 97% of myenteric pChAT-IR neurons, while in the duodenum only 7% submucosal and 5% myenteric pChAT-IR neurons were Fos positive. In the duodenum, cold induced Fos in 91% of submucosal and 99% of myenteric VIP-IR neurons. RX-77368 induces similar percentages of Fos/pChAT-IR and Fos/VIP-IR neurons. These results indicate that increased central vagal outflow activates cholinergic neurons in the stomach while in the duodenum, VIP neurons are preferentially stimulated.  相似文献   

13.
《Life sciences》1995,56(17):PL339-PL344
The conditioned place preference paradigm is commonly used to study the reinforcing properties of various drugs. In the present study, the effect of adrenalectomy (ADX) on the morphine-induced place preference was examined in rats. Morphine produced a significant preference for the drug-associated place in sham-operated (sham) and ADX rats. In sham rats, only the highest dose of morphine (8 mg/kg, i.p.) produced a significant preference, while in ADX rats, lower doses of morphine (1 and 2 mg/kg, i.p.) produced a significant preference for the drug-associated place. Furthermore, the morphine-induced place preference was blocked by the dopamine D1 antagonist SCH23390 in both sham and ADX rats. On the other hand, the cocaineinduced place preference was not affected by ADX. In the present study, we found that ADX potentiates the reinforcing effect induced by morphine, but not that induced by cocaine, which suggests that the enhancement by ADX may be due to a change in opioid receptors, morphine metabolism and/or some other cause, but not to a change in dopamine receptors.  相似文献   

14.
Male urinary pheromones modulate behavioral and neuroendocrine function in mice after being detected by sensory neurons in the vomeronasal organ (VNO) neuroepithelium. We used nuclear Fos protein immunoreactivity (Fos-IR) as a marker of changes in neuronal activity to examine the processing of male pheromones throughout the VNO projection pathway to the hypothalamus. Sexually naive male and female Balb/c mice were gonadectomized and treated daily with estradiol benzoate (EB) or oil vehicle for 3 weeks. Subjects were then exposed to soiled bedding from gonadally intact Balb/c males or to clean bedding for 90 min prior to sacrifice and processing of their VNOs and forebrains for Fos-IR. Male pheromones induced similar numbers of Fos-IR cells in the VNO neuroepithelium of oil-treated male and female subjects; however, EB-treated females had significantly more Fos-IR neurons in the VNO than any other group. There was an equivalent neuronal Fos response to male odors in the mitral and granule cells of the anterior and posterior accessory olfactory bulb of males and females, regardless of hormone treatment. In central portions of the VNO projection pathway (i.e., bed nucleus of the stria terminalis, medial preoptic area) neuronal Fos responses to male pheromones were present in female but absent in male subjects, regardless of hormone treatment. In a separate experiment, mating induced neuronal Fos-IR in these brain regions at levels in gonadally intact male subjects which were equal to or greater than those seen in ovariectomized females primed with estrogen and progesterone. This suggests that neurons in the central portions of the male's VNO pathway are capable of expressing Fos. Our results suggest that sexually dimorphic central responses to pheromones exist in mice that may begin in the VNO neuroepithelium.  相似文献   

15.
To investigate the effect of the increase in glucocorticoids during exercise on endurance, rats were either sham operated (SO) or adrenalectomized. All adrenalectomized rats were given a subcutaneously implanted corticosterone pellet at the time of adrenalectomy. Adrenalectomized rats were injected with corticosterone (ADX Cort) or corn oil (ADX) 5 min before exercise. Rats were killed at rest or after running on a treadmill (21 m/min, 15% grade) until exhaustion. SO rats ran 138 +/- 6 min compared with 114 +/- 9 min for ADX Cort and 89 +/- 8 min for ADX. All differences in run times were significant (P less than 0.05). Corticosterone levels were similar in exhausted SO and ADX Cort groups. ADX exhausted rats had corticosterone levels similar to resting values in SO and ADX rats. Inhibition of the rise in glucocorticoids during exercise had no effect on liver glycogen, liver adenosine 3',5'-cyclic monophosphate, plasma insulin, blood glucose, lactate, glycerol, or 3-hydroxybutyrate, plasma norepinephrine, or red quadriceps and soleus glycogen. Plasma free fatty acids were significantly depressed at exhaustion in ADX rats compared with SO. These data show that glucocorticoids exert effects within the time frame of a prolonged exercise bout and play a role in increasing endurance.  相似文献   

16.
We studied the response of type II thyroxine 5′-deiodinase (5′-D) activity to superior cervical ganglionectomy (SCGX) or adrenalectomy (ADX) in the rat pineal gland and other tissues. The results show that no difference was found between controls and SCGX animals during the day, but at night, SCGX modified the day-night cycle of 5′-D activity in the pineal gland. In the same way, ADX did not modify the enzyme activity during the day in pineal gland, harderian gland, hypophysis, or brain frontal cortex (BFC). However, in brown adipose tissue (BAT), where thyroid hormone metabolism is extremely dependent on α1-adren-ergic stimulation by blood circulating catecholamines, 5′-D activity is significantly decreased. At the time point of maximal pineal 5′-D activity in controls (02:00 h), ADX animals did not exhibit the nocturnal increase of the enzyme activity that occurs with control rats. Moreover, at 04:00 h ADX did not show any effect on pineal 5′-D activity. These results seem to suggest that the presence of catecholamines in blood is necessary for the pineal 5′-D activity nocturnal increase, although it does not participate in regulating the basal enzyme activity during the day.  相似文献   

17.
Kodama T  Usui S  Honda Y  Kimura M 《Peptides》2005,26(4):631-638
To investigate whether a diurnal animal possesses the orexinergic system implicating vigilance and behavior, we examined Fos immunoreactivity (IR) in orexinergic neurons of Korean chipmunks raised under 12h light-dark cycles. Brain tissue, collected at four different zeitgeber times (ZT), was double-labeled with Fos and orexin-A antibodies. There was no difference in the number of orexin-IR neurons in the hypothalamus across all ZTs. However, more orexin-IR neurons expressing Fos-IR were found at ZTs 3 and 9 than ZTs 15 and 21. The results demonstrate circadian variations in the activation of orexin neurons corresponding with locomotor cycles, similarly seen in nocturnal rodents.  相似文献   

18.
These studies examined Fos protein expression in spinal cord neurons synaptically activated by stimulation of bladder afferent pathways after spinal cord injury (SCI). In urethan-anesthetized Wistar rats after SCI for 6 wk, intravesical saline distension significantly (P 相似文献   

19.
This study investigated the neuronal activation (c-fos) in the mediobasal hypothalamus (MBH) of the Indian weaver bird, after exposure to a single long-day. Wild-caught photosensitive birds were exposed to the short-days (LD 8L:16D). After four days of short-days photoperiod, the LD cycle was programmed such that the light illumination was continuous after zeitgeber time (ZT) 8. Birds were perfused on the same day at ZT 4 or ZT 20. Brains were processed for the immunohistochemistry of c-fos (Fos) in the MBH. We found a significant higher activation of Fos in neurons within the ventral tuberal division (containing infundibular nucleus) of the MBH, in group that received 20-h light than that received 4-h light on first long-day. But in the dorsal tuberal division, there was no noticeable difference in Fos-lir activation on after 4-h and 24-h light exposure. The results suggest that the ventral tuberal division of mediobasal hypothalamus is principally involved in detecting the photoperiodic information from the external environment, and hence, suggested as the key neural center, involved in the photoperiodic mechanism in Indian weaver bird.  相似文献   

20.
Arvicanthis niloticus is a diurnal murid rodent from sub-Saharan Africa. Here we report on processes associated with mating in this species in an attempt to elucidate how the neural mechanisms governing temporal organization differ in nocturnal and diurnal species. First, we systematically mapped the distribution of GnRH neurons in adult females. Second, we tested the hypothesis that Arvicanthis differ from nocturnal murid rodents with respect to the timing of the LH surge and the associated increase in Fos expression in GnRH-immunoreactive (IR) neurons. We examined these events around a postpartum estrus. When parturition occurred between zeitgeber time (ZT) 2 and 17 (lights on at ZT 0 and off at ZT 12; there are 24 ZT units a day, each equivalent to 1 standard hour), we collected blood and perfused females at ZT 17, 20, 23, or 2. A sharp peak in plasma LH occurred at ZT 20, and a 10-fold increase in the percentage of GnRH-IR neurons that expressed Fos-IR occurred between ZT 17 and 20. By contrast, this rise occurs in nocturnal rodents during the last few hours of the light period. This is the first indication of a difference between nocturnal and diurnal animals with respect to neural mechanisms associated with a precisely timed event of known significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号