首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Both local and regional filters can determine the invasion of alien species into native plant communities. However, their relative importance is essentially unknown. We used plot data from fragments of indigenous forests in southeastern New Zealand to infer which factors are important in explaining invasibility, measured as alien species richness. Twenty-eight predictor variables comprising both local factors (stand structure and soil) and regional ones (climate and land cover) were assessed. Reduction or increase in deviance in linear models was assessed, both individually and with a forward and backward stepwise variable selection procedure using the Akaike information criterion (AIC).
We found that higher alien species richness was mainly associated with forest fragments of small area in warm and dry climates and where there were only small areas of surrounding indigenous forest. Local soil and stand structure variables had considerably smaller effects on alien species richness than the regional land cover and climate variables. Alien species richness showed no relationship with native species richness. We conclude that in the forest fragments investigated here, of the variables included in the analyses, regional land cover and climate variables are potentially important drivers for alien species richness at plot level. This has implications for projections of alien species spread in the future under different climate change and land use scenarios.  相似文献   

2.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

3.
Abstract. Local variation in individual density, species composition, species richness and species diversity of terrestrial pteridophytes were studied at four sites in the tropical lowland rain forest of western Amazonia. 15 568 pteridophyte individuals representing 40 species were recorded in four plots. The variability among subplots within the same plot was considerable in all the characteristics measured (number of individuals, number of species, species diversity); the square 1‐ha plot was more homogeneous in these respects than any of the three 5 m by 1300 m transects. Species richness was affected by the density of individuals both within and among plots. Density of individuals was not affected by topographical position within any of the plots, whereas in some of the plots both species richness and species diversity were. Clustering and ordination analyses showed that floristically similar subplots could be found in different plots: although there was a tendency for subplots from the same plot to be floristically similar and therefore to group together, many recognized groups included subplots from two or more plots. Both within and among plots, the floristic differences corresponded to topographic position and were probably related to soil drainage. This was also evident in that the abundance patterns of many species followed the topography.  相似文献   

4.
Abstract. The fragmentation and deterioration of old‐growth forest habitat by modern forestry have become a major threat to species diversity in Fennoscandia. In order to develop a conservation strategy for the remaining diversity it is essential to identify the existing diversity and to develop appropriate conservation and monitoring programs. For these purposes indicators of conservation value for administrative prioritization are required. This study examines the predictability of plant and fungal species richness on two spatial scales on 46 isolated old‐growth forest islands (0.17 ‐ 12 ha) in a forest‐wetland mosaic. We explore (1) to what extent area, isolation and stand structure variables can explain the variation in species richness and (2) if richness patterns of individual species groups correlate. Isolation showed no relation to species richness. Area explained 50 ‐ 70% of the variation in total species richness and was positively related to the density of crustose lichens and Red‐list species in island interiors. Stand structure variables explained 28 ‐ 66% of the residual variation in total species richness after controlling for island size, and 15 ‐ 73% of the variation in density of species in island interiors. The highest predictability of species richness was found among substrate‐specific fungi and Red‐list species. Different stand structure variables were found to explain richness in the different species groups, and only among a few species groups species richness correlated. Thus, species richness of one single species group is unlikely to be a good indicator for total biodiversity. The results show that measurements of stand size and stand structure variables may be a strong complementary tool, and sometimes a substitute to extensive species inventories when one aims to estimate and monitor plant and fungal species diversity in old‐growth Picea abies forests.  相似文献   

5.
Understanding the processes that shape biodiversity patterns is essential for ecosystem management and conservation. Local environmental conditions are often good predictors of species distribution and variations in habitat quality usually positively correlate to species richness. However, beside habitat limitation, species presence-absence may be constrained by dispersal limitation. We tested the relative importance of both limitations on saproxylic beetle diversity, using forest continuity as a surrogate for dispersal limitation and stand maturity as a surrogate for habitat limitation. Forest continuity relies on the maintenance of a forest cover over time, while stand maturity results in the presence of old-growth habitat features. Forty montane beech-fir forests in the French pre-Alps were sampled, under a balanced sampling design in which forest continuity and stand maturity were crossed. A total of 307 saproxylic beetle species were captured using flight-interception traps and Winkler–Berlese extractors. We explored the response of low- versus high-dispersal species groups to forest continuity and stand maturity. Saproxylic beetle diversity increased significantly with stand maturity and was mostly influenced by variables related to deadwood diversity at the stand scale and suitable habitat availability at the landscape scale. Surprisingly, no evidence of dispersal limitation was found, as diversity patterns were not influenced by forest continuity and associated variables, even for low-dispersal species. Our study demonstrates that in an unfragmented forest landscape, saproxylic beetles are able to colonize recent forests, as long as local deadwood resources are sufficiently diversified (e.g. tree species, position, diameter and/or decay stage).  相似文献   

6.
Skov  Flemming 《Plant Ecology》2000,146(2):121-130
The importance of neighbourhood structure on the distribution of plant functional attributes was investigated in two managed forests in Denmark. Species composition was recorded for 325 plots of 5×5 m and species were assigned to functional groups based on vegetative attributes: (a) Raunkiaer life-form and (b) height of adult plants, and regenerative attributes: (c) mode of dispersal and (d) pollination class. The distribution of attributes was related to neighbourhood parameters that reflect the composition, distribution and diversity of nine habitat classes within a 25-m radius from the focal plot. Regression trees were used to analyse counts of attributes per plot. Best predictors were neighbourhood scores for open areas, road-side habitat, and neighbourhood diversity. The correlation between individual functional attributes and neighbourhood parameters were presented in a correlation matrix. A cluster analysis, representing a first step towards the construction of plant functional types, resulted in five groups characterised by a particular combination of functional attributes and preference of neighbourhood.  相似文献   

7.
The increasing demand for forest-derived bio-fuel may decrease the amount of dead wood and hence also the amount of available substrate for saproxylic ( = dead-wood dependent) organisms. Cut stumps constitute a large portion of dead wood in managed boreal forests. The lichen flora of such stumps has received little interest. Therefore, we investigated which lichens that occur on stumps in young (4–19 years), managed forests and analyzed how species richness and occurrence of individual species were related to stump and stand characteristics. We performed lichen inventories of 576 Norway spruce stumps in 48 forest stands in two study areas in Central Sweden, recording in total 77 lichen species. Of these, 14 were obligately lignicolous, while the remaining were generalists that also grow on bark, soil or rocks. We tested the effect of characteristics reflecting successional stage, microclimate, substrate patch size, and the species pool in the surrounding area on (1) total lichen species richness, (2) species richness of obligately lignicolous lichens and (3) the occurrence of four obligately lignicolous lichen species. The most important variables were stump age, with more species on old stumps, and study area, with similar total species richness but differences in occupancy for individual species. Responses for total lichen species richness and species richness of obligately lignicolous lichens were overall similar, indicating similar ecological requirements of these two groups. Our results indicate that species richness measurements serve as poor proxies for the responses of individual, obligately lignicolous lichen species.  相似文献   

8.
Local spatial variation in species distributions is driven by a mix of abiotic and biotic factors, and understanding such hierarchical variation is important for conservation of biodiversity across larger scales. We sought to understand how variation in species composition of understory vascular plants, spiders, and carabid beetles is associated with concomitant spatial variation in forest structure on a 1‐ha permanent plot in a never‐cut mixedwood forest in central Alberta (Canada). Using correlations among dendrograms produced by cluster analysis we associated data about mapped distribution of all living and dead stems > 1 cm diameter at breast height with distributions of the three focal taxa sampled from regular grids across the plot. Variation in each of these species assemblages were significantly associated with several forest structure variables at various spatial scales, but the scale of the associations varied among assemblages. Variation in species richness and abundance was explained mostly by changes in basal area of trees across the plot; however, other variables (e.g. snag density and tree density) were also important, depending on assemblage. We conclude that fine‐scale habitat variation is important in structuring spatial distribution of the species of the forest floor, even within a relatively homogeneous natural forest. Thus, assessments that ignore within‐stand heterogeneity and management that ignores its maintenance will have limited utility as conservation measures for these taxa, which are major elements of forest biodiversity.  相似文献   

9.
The effect of management related factors on species richness of epiphytic bryophytes and lichens was studied in managed deciduous-coniferous mixed forests in Western-Hungary. At the stand level, the potential explanatory variables were tree species composition, stand structure, microclimate and light conditions, landscape and historical variables; while at tree level host tree species, tree size and light were studied. Species richness of the two epiphyte groups was positively correlated. Both for lichen and bryophyte plot level richness, the composition and diversity of tree species and the abundance of shrub layer were the most influential positive factors. Besides, for bryophytes the presence of large trees, while for lichens amount and heterogeneity of light were important. Tree level richness was mainly determined by host tree species for both groups. For bryophytes oaks, while for lichens oaks and hornbeam turned out the most favourable hosts. Tree size generally increased tree level species richness, except on pine for bryophytes and on hornbeam for lichens. The key variables for epiphytic diversity of the region were directly influenced by recent forest management; historical and landscape variables were not influential. Forest management oriented to the conservation of epiphytes should focus on: (i) the maintenance of tree species diversity in mixed stands; (ii) increment the proportion of deciduous trees (mainly oaks); (iii) conserving large trees within the stands; (iv) providing the presence of shrub and regeneration layer; (v) creating heterogeneous light conditions. For these purposes tree selection and selective cutting management seem more appropriate than shelterwood system.  相似文献   

10.
Species diversity, density, population structure and dispersion patterns of all trees and lianas (30cm gbh) were inventoried in a tropical semi-evergreen forest in the Shervarayan hills of Eastern Ghats, south India. Such data are necessary for ecosystem conservation of the under-studied Eastern Ghats, as extensive forests here have already been converted to coffee and orange plantations and the landscape changed due to aluminium ore mining and quarrying. Four 1-ha plots were established in Sanyasimalai (SM) reserve forest of the Shervarayan hills, one plot (SM1) located close to mining and quarrying area, two other contiguous plots (SM2 and SM3) located in selective felling area and the fourth (SM4) in a relatively undisturbed forest. These are 1 to 4km apart in the same semi-evergreen forest tract. In the four study plots a total of 3260 stems (mean density 815ha–1) covering 80 species in 71 genera and 44 plant families were recorded. Species richness was greatest in the undisturbed plot SM4 (50), while lowest (33) in the selectively felled site SM2. The forest stand (SM4) was also denser (986 stemsha–1) and more voluminous (basal area 44.3m2ha–1 as compared with the site mean of 35m2ha–1) than the other plots. Four trees, Chionanthus paniculata, Syzygium cumini, Canthium dicoccum and Ligustrum perrottetii dominated the stand, collectively contributing to >50% of the total density. Species richness and stand density decreased with increasing tree girths. The forest stand contained a growing population, but there was considerable variation in basal area distribution between the plots. Trends in species population structure varied, particularly for selective-felled species. Most species exhibited clumped dispersion of individuals both at 0.25ha and 1-ha scales. Variation in plant diversity and abundance are related to site attributes and human impacts.  相似文献   

11.
One of the most important drivers for the coexistence of plant species is the resource heterogeneity of a certain environment, and several studies in different ecosystems have supported this resource heterogeneity–diversity hypothesis. However, to date, only a few studies have measured heterogeneity of light and soil resources below forest canopies to investigate their influence on understory plant species richness. Here, we aim to determine (1) the influence of forest stand structural complexity on the heterogeneity of light and soil resources below the forest canopy and (2) whether heterogeneity of resources increases understory plant species richness. Measures of stand structural complexity were obtained through inventories and remote sensing techniques in 135 1‐ha study plots of temperate forests, established along a gradient of forest structural complexity. We measured light intensity and soil chemical properties on six 25 m² subplots on each of these 135 plots and surveyed understory vegetation. We calculated the coefficient of variation of light and soil parameters to obtain measures of resource heterogeneity and determined understory plant species richness at plot level. Spatial heterogeneity of light and of soil pH increased with higher stand structural complexity, although heterogeneity of soil pH did not increase in conditions of generally high levels of light availability. Increasing light heterogeneity was also associated with increasing understory plant species richness. However, light heterogeneity had no such effects in conditions where soil resource heterogeneity (variation in soil C:N ratios) was low. Our results support the resource heterogeneity–diversity hypothesis for temperate forest understory at the stand scale. Our results also highlight the importance of interaction effects between the heterogeneity of both light and soil resources in determining plant species richness.  相似文献   

12.
Patterns of moss and liverwort species diversity — species richness and species turnover (β‐diversity) — in three conifer‐dominated boreal forest stands of northern Alberta, Canada are described. We examined the relationship between bryophyte species diversity and micro‐environment at two sample grains, the microsite — substrate types for moss colonization: logs, stumps, tree bases, undisturbed patches of forest floor (dominated by feather moss species), and disturbed patches of forest floor — and the mesosite (25 m × 25 m plots). Microsite type and properties (e.g. decay class, hardwood vs softwood, pH) were the principal predictors of bryophyte species diversity and not micro‐environment variation among mesosites. Microsite type was the strongest predictor of microsite species richness and β‐diversity was higher among microsites and types and within microsites than among mesosites or stands. Microsite properties were significant predictors of species richness for all microsite types. Log and stump decay classes, influenced also by hardwood vs softwood predicted species richness of woody microsite types and soil pH and moisture predicted species richness of forest floor microsites. β‐diversity was highest for tree bases and disturbed patches of forest floor and lowest for logs. Mesosite β‐diversity was lower than that among microsites, and mesosite species richness was not well explained by measured environmental parameters. Results suggest that in conifer‐dominated boreal stands, species richness of microsites is only negligibly influenced by within‐stand variation at the mesosite grain and that substrate characteristics are the most important predictors of bryophyte species diversity in this ecosystem.  相似文献   

13.
To maintain biodiversity in managed forests we must understand how forestry affects various organisms across a wide range of spatial and temporal scales. We compared landscape structure, forest structure, and species richness and abundance of epiphytic macrolichens in three pairs of natural and managed boreal forest landscapes. Study landscapes (2500 ha) were located within and adjacent to three of the largest forest reserves in Sweden (Reivo, Muddus, Jelka). The structural heterogeneity within landscapes was higher in managed forests whereas within-stand structural heterogeneity was higher in natural landscapes. Species richness of macrolichens at the stand level (sample plot) was 23% higher in natural forests but there was no difference at the landscape level. Most (86%) of the common species were more frequent in natural landscapes. Lichen abundance (estimated by lichen litter) was two times higher in natural than in managed landscapes, 5.6 and 2.7 kg ha-1 forest (pooled data), respectively. Both species richness and abundance were negatively related to cutting level (number and basal area of cut stumps) and positively related to stand variables (stand age, stem density and basal area). Lichen-rich forest stands were more numerous but covered a smaller area and were more isolated in managed landscapes. This may in turn have important consequences for dispersal of lichen propagules to second-growth forests. In conclusion, the results suggest that effects of forestry on epiphyte diversity and abundance are strongly related to the spatial scale (stand or landscape). To enhance biodiversity in managed forests we must increase structural heterogeneity at the whole range of spatial and temporal scales.  相似文献   

14.
Pitkänen  Sari 《Plant Ecology》2000,146(1):11-28
Diversity of vegetation in managed forests is studied. A classification based on forest stand structure, the abundances of vegetation species and variations in these abundances is developed and diversity indices are calculated for the classes to describe the diversity of the vegetation within the classes. The classes were formed using detrended correspondence analysis (DCA), global nonmetric multidimensional scaling (GNMDS) and TWINSPAN classification. Discriminant analysis was used to determine the environmental variables differentiating between the classes, and Duncan's multiple range test was used to examine the ability of the diversity measures to distinguish the classes. Beta diversity was estimated with Økland's method based on DCA ordination of the sample plots. The results point to fertility and the successional stage of the stand as the main factors affecting species diversity, in addition to which soil type, the number of tree species, crown cover, basal area and certain variables describing the management of the stand were relevant to the classification. The most distinct diversity indices were the reciprocal of Simpson, Pielou's J' and species richness, while the highest alpha diversity was found in young stands with a low crown cover on herb-rich or mesic forest sites. Beta diversity was quite high, its highest values of all for the whole data being recorded along the fertility gradient.  相似文献   

15.
Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m2 comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species instead of coniferous plantations, and (5) increasing the amount of deadwood in forests.  相似文献   

16.
Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age stands, three even-age unthinned stands and two even-age thinned stands. Plots 100 m x 60 m were established and 3000 m2 within each plot was sampled during the summers of 1996 and 1997. A total of 255 polyporoid and corticioid morphological species were identified, 46 (18%) of which could not be assigned to a described species. Species accumulation curves for sites and management classes differed from straight lines, although variability from year to year suggests that more than 2 y of sampling are needed to characterize annual variation. Mean species richness and diversity index values did not vary significantly by management class, although mean richness on large diameter wood (> or = 15 cm diam) varied with moderate significance. Richness values on small diameter debris varied significantly by year, indicating that a large part of year-to-year variability in total species richness is due to small diameter debris. Ten species had abundance levels that varied by management class. Two of these species. Changes in the diversity and species composition of the wood-inhabiting fungal community could have significant implications for the diversity, health and productivity of forest ecosystems.  相似文献   

17.
The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at ‘local’ and ‘landscape’ scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the ‘ancient forest species’), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.  相似文献   

18.

Background

Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations.

Methodology and Principal Findings

We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness.

Conclusion and Significance

Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with stand management strategies that retain or increase hardwood vegetation while simultaneously regenerating the conifer cover in commercial tree plantations.  相似文献   

19.
We identified the extent to which ant diversity occurs despite conversion of forests into cocoa plantations by examining the communities across four age classes of plantations (classes I–IV with increasing age from 0–5 to 21–40 years) and in their original forests. An extensive sampling protocol consisting of pitfall trapping, leaf litter sampling, soil sampling and hand sampling was used to characterize ant species richness and composition in three replicates of each age class and in the remaining forest patches. A total of one hundred ant species was found in all habitats combined. While the forest was the richest habitat (73 species), species richness in the different plantation age classes varied as follows (sorted in descending order): class IV (69 species) > class III (57 species) > class I (52 species) > class II (43 species). Age gradient was thus significantly positively correlated with mean species richness and with the relative abundance of some subfamilies. The species composition differed greatly between some plantation age classes and the forest. The two youngest cocoa age classes (I and II) were most dissimilar to the forest. In contrast, forest ants were well represented in the old cocoa age classes (III and IV). Three functional guilds (generalist predators, specialist predators and territorially dominant arboreal species) were in their relative abundance significantly correlated to the age gradient. Overall, cocoa cultivations retaining a floristically diverse and structurally complex forest structure are a suitable management system for the conservation of ant species of the formerly forested habitats.  相似文献   

20.
李伟  张翠萍  魏润鹏 《生态学报》2014,34(17):4957-4965
以位于广东省中西部的高要市桉树人工林林下植被群落为研究对象,对不同龄级林分物种多样性进行比较分析,采用典范对应分析(CCA)方法进行排序并通过相关分析,对物种分布和多样性与土壤因子的关系进行了研究。结果表明,每龄级24块样地充足,从第9块样地开始不同龄级的物种数目出现一定程度的差异。桉树林分样地中共有136种植物,隶属54科107属,灌木层的种类最多,但以草本层物种为优势种。不同龄级林分之间物种多样性差异不显著,但1—2年生林分低于2—4年生和5—6年生两个龄级;3—4年生的Shannon指数、Simpson指数和丰富度最高。对植被物种的分布,土壤中有机质、全磷、全钾和容重的影响明显,pH值也有一定程度作用,而对物种多样性,pH值和全氮是最为稳定的影响因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号