首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dark taiga of Siberia is a boreal vegetation dominated by Picea obovata, Abies sibirica, and Pinus sibirica during the late succession. This paper investigates the population and age structure of 18 stands representing different stages after fire, wind throw, and insect damage. To our knowledge, this is the first time that the forest dynamics of the Siberian dark taiga is described quantitatively in terms of succession, and age after disturbance, stand density, and basal area. The basis for the curve–linear age/diameter relation of trees is being analyzed. (1) After a stand-replacing fire Betula dominates (4,000 trees) for about 70 years. Although tree density of Betula decreases rapidly, basal area (BA) reached >30 m2/ha after 40 years. (2) After fire, Abies, Picea, and Pinus establish at the same time as Betula, but grow slower, continue to gain height and eventually replace Betula. Abies has the highest seedling number (about 1,000 trees/ha) and the highest mortality. Picea establishes with 100–400 trees/ha, it has less mortality, but reached the highest age (>350 years, DBH 51 cm). Picea is the most important indicator for successional age after disturbance. Pinus sibirica is an accompanying species. The widely distributed “mixed boreal forest” is a stage about 120 years after fire reaching a BA of >40 m2/ha. (3) Wind throw and insect damage occur in old conifer stands. Betula does not establish. Abies initially dominates (2,000–6,000 trees/ha), but Picea becomes dominant after 150–200 years since Abies is shorter lived. (4) Without disturbance the forest develops into a pure coniferous canopy (BA 40–50 m2/ha) with a self-regenerating density of 1,000 coniferous canopy trees/ha. There is no collapse of old-growth stands. The dark taiga may serve as an example in which a limited set to tree species may gain dominance under certain disturbance conditions without ever getting monotypic.  相似文献   

2.
Abstract. In a montane mixed Fagus‐Abies‐Picea forest in Babia Gora National Park (southern Poland), the dynamics of an old‐growth stand were studied by combining an 8‐yr annual census of trees in a 1‐ha permanent sample plot with radial increments of Abies and Picea growing in the central part of the plot. The mortality among the canopy trees was relatively high (10% in 8 yr), but the basal area increment of surviving trees slightly exceeded the losses caused by tree death. DBH increment was positively correlated with initial diameter in Abies and Picea, but not in Fagus. For individual trees smaller than the median height, basal area increment was positively related to the basal area of old snags and the basal area of recently deceased trees in their neighbourhood, but negatively related to the basal area of live trees. Dendrochronological analysis of the past growth patterns revealed numerous periods of release and suppression, which were usually not synchronized among the trees within a 0.3 ha plot. The almost normal distribution of canopy tree DBH and the small number of young individuals in the plot indicated that stand dynamics were synchronized over a relatively large area and, hence, were consistent with the developmental phase concept. On the other hand, the lack of synchronization among periods of growth acceleration in individual mature Abies and Picea trees conforms more closely to the gap‐dynamics paradigm.  相似文献   

3.
Abstract. Structural and compositional changes were analysed over the course of 400+ yr of post‐fire succession in the sub‐boreal forests of west‐central British Columbia. Using a chronosequence of 57 stands ranging from 11 to 438 yr in age, we examined changes in forest structure and composition with complementary PCA and DCA ordination techniques. To determine stand ages and timing of tree recruitment, approximately 1800 trees were aged. Most early successional forests were dominated by Pinus contorta, which established rapidly following fire. Abies lasiocarpa and Picea glauca × engel‐mannii were also able to establish quickly, but continued to establish throughout the sere. Few Pinus contorta survived beyond 200 yr, resulting in major changes in forest structure. In some stands P. contorta never established, which led to considerable variation among stands less than 200 yr old. The oldest forests converged on dominance by Abies lasiocarpa. Vascular plant diversity decreased during succession whereas canopy structure became more complex as gap dynamics developed. Although these sub‐boreal forests contain few tree species, successional changes were pronounced, with structure changing more than composition across the chronosequence.  相似文献   

4.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

5.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

6.
Population age structure and succession were investigated in subalpine forests in the Colorado Front Range dominated by Pinus flexilis (limber pine). Age, size, and spatial data were collected from three recent burns (<100 yr old), six ca. 240 year-old post-fire stands, and two old-growth stands (individuals > 400 yr old). The sequence of colonization of now extant trees on these post-fire sites appeared to be consistent: first Pinus flexilis, then Picea engelmannii (Engelmann spruce), and later Abies lasiocarpa (subalpine fir) with a delay between the first Pinus flexilis and Abies of as long as 140 yr. The advantage of Pinus flexilis on post-burn sites can be attributed to avian seed dispersal and the exceptional drought tolerance of its seedlings. The three recent burns were not extensive, and the delay in establishment of Picea and Abies appeared to be limited by harsh site conditions rather than lack of seed dispersal. Spatial analysis indicated a consistent, although sometimes weak, attraction between Pinus flexilis and Picea and Pinus flexilis and Abies at a scale of 1–4 m, suggesting that Pinus flexilis may facilitate establishment of Picea and Abies seedlings by providing shade or protection from wind. On xeric to slightly xeric sites, Pinus flexilis appeared to form broadly even-aged, non-regenerating populations that were gradually being replaced by Picea and Abies. Replacement is proceeding at a faster rate on the least xeric sites (north aspects, valley bottoms) compared to the most xeric sites (south aspects). On the most extreme sites, Pinus flexilis formed all-aged, self-maintaining populations with no evidence of replacement by Picea and Abies. In these old-growth forests with occasional trees aged at > 1300 yr, recruitment is continuous or episodic.  相似文献   

7.
Michalet  R.  Rolland  Ch.  Joud  D.  Gafta  D.  Callaway  R.M. 《Plant Ecology》2003,165(2):145-160
Spatialassociations among overstory and understory species tend to increase ongradients from wet to dry climates. This shift in the strength of spatialassociations has usually been attributed to shared abiotic requirements betweencanopy species and understory assemblages within communities and/or to anincrease in habitat heterogeneity in dry climates and therefore higher betadiversity. On another hand, more important positive effects of tree canopies onunderstory species in drier climates may also explain stronger associations andhigher beta diversity. We examined these three hypotheses along a strongrainshadow gradient that occurs from the wet external Alps to the dry innerAlpsby analyzing with correspondence analysis and canonical correspondence analysisthe species composition of 290 relevés of forests dominated to differentdegrees by Abies alba and Piceaabies.We found important differences in climatic requirements forAbies and Picea, withAbies occurring in warmer and drier habitats thanPicea. The understory species associated with these twospecies showed similar correlations with temperature but not with moisture,withunderstory species of Picea-communities having strongerxeric affinities than understory species ofAbies-communities. We found no significant associationsbetween canopy species and understory composition in the external Alps despitethe fact that Abies and Piceaoccurredin substantially different environments. In contrast,Abiesand Picea occurred in more similar environments in theinner Alps, but the understory assemblages associated with eitherAbies or Picea were significantlydifferent. This increase in canopy-understory associations was in partdetermined by strong differences in moisture between southern and northernaspects in the inner Alps, which affected both canopy and understory speciesdistributions. However, differences between the canopy effects ofPicea and Abies also appeared tocontribute to stronger associations between canopy and understory species, andconsequently to increase beta diversity. This pattern only occurred on southernaspects of the inner Alps but was highly significant. Our results suggest thatspecies distributions may be continuous on the wet ends of moisture gradientsbut discrete on dry ends. Relatively discrete communities at stressful ends ofgradients appear to develop as a result of both habitat differentiation and thepositive effects of overstory species.  相似文献   

8.
Abstract. Several species of Araucaria and Agathis (Araucariaceae) occur as canopy emergents in rain forests of the western pacific region, often representing major components of total stand biomass. New data from permanent forest plots (and other published work) for three species (Araucaria hunsteinii from New Guinea, A. laubenfelsii from New Caledonia, and Agathis australis from New Zealand) are used to test the validity of the temporal stand replacement model proposed by Ogden (1985) and Ogden & Stewart (1995) to explain the structural and compositional properties of New Zealand rain forests containing the conifer Agathis australis. Here we propose the model as a general one which explains the stand dynamics of rain forests with Araucariaceae across a range of sites and species in the western Pacific. Forest stands representing putative stages in the model were examined for changes through time in species recruitment, growth and survivorship, and stand richness, density and basal area. Support for the model was found on the basis of: 1. Evidence for a phase of massive conifer recruitment following landscape-scale disturbances (e.g. by fire at the Huapai site, New Zealand for Agathis australis); 2. Increasing species richness of angiosperm trees in the pole stage of forest stand development (i.e. as the initial cohort of conifers reach tree size; >10 cm DBH); 3. A high turnover rate for angiosperms (<100 yr), and low turnover for conifers (≥ 100 yr) in the pole stage, but similar turnover rates for both components (50–100 yr) as forests enter the mature to senescent phase for the initial conifer cohort; 4. Very low rates of recruitment for conifers within mature stands, and projected forest compositions which show increasing dominance by angiosperm tree species; 5. A low probability of conifer recruitment in large canopy gaps created by conifer tree falls during the initial cohort senescent phase, which could produce a second generation low density stand in the absence of landscape scale disturbance; 6. Evidence that each of the three species examined required open canopy conditions (canopy openness > 10 %) for successful recruitment. The evidence presented here supports the temporal stand replacement model, but more long-term supporting data are needed, especially for the phase immediately following landscape level disturbance.  相似文献   

9.
Tree regeneration on rotten wood and on soil in old-growth stand   总被引:1,自引:0,他引:1  
Forest regeneration on soil and on decaying wood was studied in natural mixed stand of Facus sylvatica L., Abies alba Mill. and Picea abies Karst. in Babia Góra National Park, Western Carpathians.Downed wood, divided into five decay classes covered around 6% of the forest floor. Among seedlings, Fagus and Abies codominated, while Picea was less numerous. The average seedling density on the soil with herb layer (240 ind./100 m2) was higher than on the logs, even on the strongly decayed ones (177 ind./100 m2). However, the density of Abies and Picea seedlings was higher on the rotten wood than on soil. Seedling survival of all species was better on the logs, especially in conifers. Because of the total dominance of Fagus among saplings, the presence of Abies and Picea in the next generation of canopy trees can strongly depend upon their regeneration on decaying wood.  相似文献   

10.
Abstract. We present results from repeated analyses (1962, 1993) of a permanent plot established in 1947, combined with retrospective stand age structure data, in an old Pinus sylvestris stand in Muddus National Park, northern Sweden. The study points towards a successional pathway governed by concurrent disturbance effects of climate variability, reindeer grazing and fire. This is intermediate to the two often advocated ideas on dynamics in boreal forests, that is, one of disturbance-related tree regeneration/mortality and one of continuous regeneration. When the plot was established in 1947 the tree layer (> 1.3 m) consisted of 300 individuals/ha of P. sylvestris and 62/ha of Betula pubescens. Subsequently the stand has become more dense and the species dominance has shifted. In 1993, 362 P. sylvestris and 62 Picea abies individuals were present per ha, while no Betula individuals were found. The number of dead trees increased from zero in 1947 to 200/ha (Pinus) in 1993. Pinus was also the most common species in the sapling layer (< 1.3 m) throughout the study period, though the number dropped from 8912/ha in 1947 to 51% in 1993. Dead saplings decreased from 2650/ha in 1947 to ca. 50% in 1962, and only 9% in 1993. Temporal variations in mortality and sapling mean height coincided with variations in snow depth, indicating a critical period in sapling development when saplings are exposed at the snow/atmosphere interface. The number of living Picea saplings increased slowly until 1993; no dead saplings were found. Most Pinus recruited shortly after the 1774-fire, and during the second half of the 1900s. The major part of the spruce regeneration took place during the later half of the 1900s. No successful Betula recruitment has occurred after the 1930s, and no live Betula were present in 1993, which might be explained as an effect of increased reindeer browsing – the reindeer stock has grown by 50% since 1961. Although subjected to high mortality, Pinus regenerated and maintained a seedling/sapling bank. In this way Pinus remained dominant in the tree layer after more than 200 post-fire years. The importance of the shade-tolerant Picea has slowly increased, while Betula has died off. Thus, even after 219 yr since fire there is an early successional trend in the stand. This suggests that an increased chronic disturbance (grazing/browsing by reindeer) has partly succeeded earlier discrete fire-disturbance events, and maintained a continuous seedbed favouring the shade-intolerant pine recruitment.  相似文献   

11.
12.
The regeneration process of a subalpine coniferous forest, a mixed forest ofTsuga diversifolia (dominant species),Abies veitchii, Abies mariessi, andPicea jezoensis var.hondoensis, was studied on the basis of annual ring data. The age class distribution was discontinuous and four age groups occurred in the study plot (30m×30m). The canopy layer was a mosaic of patches (83.8–133.7 m2 patch area), which had different mean ages. The recruitment of canopy trees was carried out only by advance regeneration in the plot. The diameter growth ofAbies andPicea exceeded diameter growth ofTsuga in the gap.Abies lived for 200–300 years and their trunks were susceptible to heart rot.Picea lived for 300–400 years andTsuga for more than 400 years. The regeneration process derived from the analysis of the plot consisted of three phases leading to the development of a even-aged patch; (1) the establishment of saplings before a gap opening, (2) the opening of a gap in the canopy and repair of the canopy by advance regenerated saplings dominated by rapid growth species,Abies andPicea, and (3) the dying off of canopy trees as each species reached the end of its life-span, resulting in pure patches of long-livedTsuga.  相似文献   

13.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

14.
Abstract. We documented the occurrence of a 1934 blowdown in a subalpine forest in northwestern Colorado, USA. Prior to the blowdown, the stand was dominated by old‐growth Picea engelmannii ‐ Abies lasiocarpa forests. Although blowdowns are believed to trigger outbreaks of Dendroctonus rufipennis (spruce beetle), we found no detectable increase in beetle caused mortality. Forest recovery was by both release of the previously suppressed regeneration and by new seedling establishment. Both recovery pathways were dominated by Abies. The blowdown thus caused a shift in species dominance from Picea to Abies; 65 yr after the blowdown, the fallen logs and tip up mounds continue to provide favourable habitat for seedling establishment of both species. The present study shows that the legacy of blowdowns can influence forest dynamics for decades following the disturbance event.  相似文献   

15.
Abstract. Data from three forest stands for the past 2000 yr show how the shade-intolerant species Pinus sylvestris and Betula pubescens maintain significant populations in the Swedish boreal landscape. Age structure data from a northern stand close to the range limits of Picea abies and Pinus complement a local pollen diagram, and reveal cyclic population fluctuations which can be related to periods of climatic stress and fire. Pollen data from two southern stands show that high fire frequencies in the past prevented the expansion of Picea populations. Reduction of the fire frequency during the last 200 yr has favoured Picea. A long time perspective reveals the population dynamics of long-lived species and indicates the controlling factors. Such knowledge permits assessment of the current status and likely future of forest stands.  相似文献   

16.
Abstract. Microhabitats for seedling establishment and gap regeneration in subalpine forests of northern Japan were studied for two conifers, Abies sachalinensis and Picea glehnii. The abundance of understorey dwarf bamboo (Sasa spp.) was different for the four plots examined. Two types of micro-habitats were recognized for the two conifers: ground and elevated woody substrates (fallen logs and buttresses). Picea regenerated mostly on elevated sites, while Abies regenerated on both ground and elevated sites. The densities of Picea were independent of those of Sasa, but Abies densities decreased with increasing abundance of Sasa because Sasa reduced regeneration on the ground. Density of Abies on elevated sites was higher than that of Picea, irrespective of Sasa and of the density of adult trees. There was no significant difference in growth in sapling trunk height between the two conifers, but Picea grew more slowly under the canopy than Abies and was aggregated into gaps. Thus, in forests with less Sasa, the recruitment capacity of Abies was greater than that of Picea. The long life span of Picea compensated for its low density on elevated sites. Examination of a dynamic system model showed that Picea was excluded by Abies in forests without Sasa because regeneration on the ground is more advantageous than on elevated sites, but the two conifers could coexist in forests with Sasa because of the increased relative success of regeneration on elevated sites by Picea saplings.  相似文献   

17.
Stand structure and regeneration pattern were examined inAbies sachalinensis coastal forest in northern Hokkaido. In the forest a similar phenomenon to the wave regeneration in subalpine forests has been found. Wave regeneration has been reported for montaneAbies forests in central Japan and North America. Differences and similarities between wave-type stands in this coastal forest and wave-regenerated montane forests were clarified. The shift of dead tree zone, stand structure and regeneration pattern in wave-type stands are the same as in subalpine wave-regenerated forests. High density of individuals is considered to be an internal factor which causes stand-level dieback and also enables the stands to persist in the severe environment in both forests. A difference between wave-regenerated forests andA. sachalinensis wave-type stands is the number of dead tree zones, which is only one in wave-type stands. Changes of regeneration patterns ofAbies sachalinensis with environmental gradient from seaward to inland were related to this difference.  相似文献   

18.
Summary A few assumptions were used to generate a series of specific, quantitative predictions for the relationships between stand density and various dimensional measures of canopy structure. The predictions, each indicating an increase in mean crown size as density decreased, appeared to be reasonable and intuitive. Predictions were compared to data for two conifer species with different crown forms, Pinus contorta var. latifolia and Abies lasiocarpa. Results of these comparisons were mixed — the linear, directly measured dimensions were consistent with predicted relationships, but dimensions calculated from the linear measures were not. Re-examination of the original assumptions indicated that the model should account for crown shyness (engagement/disengagement) to adequately reflect the influence of stand density on canopy structure. The results also indicated a strong association between stand height and measures of mean crown size. Mean crown size of lodgepole pine was altered much more by density than was mean crown size of subalpine fir, due primarily to the different relative shade tolerances of the two species. Some of the observed differences between species may also reflect the range of densities examined and uneven spacing in the unmanaged natural stands.  相似文献   

19.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

20.
Stand dynamics and self-thinning were analyzed in relation to the dynamics of above-ground biomass in natural Abies sachalinensis stands growing on sand dunes in northern Hokkaido, Japan. This was done in order to examine wave-type regeneration in the stands. Fifty-two plots were established in almost pure Abies stands that ranged from saplings to the mature and collapsing growth stages. Above-ground biomass and tree height reached asymptotic levels prior to the collapsing phase, unlike wave-regeneration Abies stands in central Japan and North America. Stand density was high in the young growth stages, but the self-thinning rate, that is, the density decrease per biomass growth in the study stands was greater than in wave-regeneration stands in central Japan, as indicated by a large self-thinning exponent (–1.26 by reduced major axis regression). The range of tree height distribution was very narrow, and the stands vertical structure was typically single-layered. The slenderness ratio of trees was large, except in young stands. In mature and collapsing stands, advanced seedling density increased markedly. These stand and tree characteristics were considered to be correlated with the wave-type regeneration in the study stands, and it is assumed that prevailing winds affect tree mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号