首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of wood-boring insects in the creation of light gaps within mangrove forests. We compared the frequency of gaps caused by wood borers to other gap-forming processes and characterized the physical attributes of light gaps in mangrove forests on small islands in Belize. Methods of quantifying light gaps included aerial photography, ground surveys, and experimental plots. Small light gaps (≤12 m2) were very common in Rhizophom mangle fringe, comprising almost 22 percent of these forests. Rhizophora mangle gaps were smaller than gaps in Avicennia germinans forests. In R. mangle forests, gaps were caused by branch death, and in A. germinans forests, gaps were caused primarily by downed trees. More than 91 percent of the gap-forming branches and boles in the R. mangle fringe were killed by a wood-boring cerambycid beetle, Elaphidion mimeticum, indicating that it is the major cause of small-scale disturbances in these forests. No trees or branches in the A. germinans forest were attacked by this beetle. In R. mangle forests, small gaps had significantly higher light levels and soil temperatures than areas under the closed canopy; however, soil conditions for sulfide concentrations, porewater salinity, and redox potentials were similar in small gaps and under the closed canopy. Survival of R. mangle, A. germinans, and Laguncularia racemosa seedlings was also higher inside these small gaps, indicating their importance in regeneration of mangrove forests. Feeding by wood borers is thus an important type of indirect herbivory in mangrove forests, with a critical role in ecological processes such as gap dynamics.  相似文献   

2.
Mangroves in Florida (USA) are subject to horticultural pruning that may increase the size of canopy gaps and alter rates of litter production and accumulation. Mangrove canopy gap formation is a common phenomenon, known to alter abiotic conditions near the forest floor. Using a series of field experiments in Rookery Bay, Florida, the effects of mangrove trimming on canopy density, mangrove litter production, standing litter stocks, and the decomposition rate of Rhizophora mangle leaves on the forest floor were assessed. Litter trap collections over the year following mangrove trimming indicated that pruned mangrove stands (canopy coverage: 42.8±0.9%; mean±S.E.) produced approximately one-half of the litter of mangrove stands with relatively complete canopies (canopy coverage: 72.1±0.5%). However, there was no significant difference between the mass of standing litter on the forest floor beneath reduced canopy and intact canopy mangroves. Also, R. mangle leaves held on the forest floor in fiberglass litter bags at both reduced canopy and control sites did not decompose at different rates over 28 days. These results indicate that while system-wide mangrove litter production should be reduced by the formation of these gaps in mangrove forests, postproduction influences may obscure any site-specific declines in standing litter stocks.  相似文献   

3.
This study investigated the importance of gap formation in mangrove swamps on the island of Kosrae, Federated States of Micronesia, in order to understand better both natural processes of forest development and the effects of harvesting trees for firewood in these wetlands. Measurements were concentrated in seven plots located near four rivers: three in fringe zones and four in basin zones. Each plot was a cluster of five points and covered an area of ca 1.3 ha. From every point in each of the seven plots, the nearest canopy gap ≥10 m2 was located; 25 of the 35 gaps were formed by harvesting. Porewater salinity was significantly higher under the canopy in fringe mangrove forests than in basin mangrove forests. Although gaps were small (mean gap size = 158 m2; median gap size = 92 m2), soil temperatures were significantly higher in gaps of both zones. Soil redox potential was significantly lower and porewater salinity significantly higher in the gaps than under the canopy in the basin zone only. Higher porewater salinity may be attributed to high evaporation rates from the soil and high transpiration rates from trees surrounding gaps. There were significantly more seedlings in gaps than under the canopy only in the fringe zones. Although gap formation alters the soil environment of Kosraean mangrove swamps, high freshwater input may buffer these effects in basin mangrove swamps by reducing porewater salinity. Current harvesting rates do not appear to be changing canopy species composition, but large gaps, especially in mangrove forests in more arid areas, may lead to major changes.  相似文献   

4.
Species zonation patterns across tidal gradients in mangrove forests are formed by successful seedling establishment and maintained by replacement of adults by conspecific seedlings. These two processes rarely have been examined experimentally in neotropical mangal. We studied survivorship and growth of seedlings of two species of mangrove, Rhizophora mangle L. and Avicennia germinans (L.) Steam, across a tidal gradient in Belize, Central America. Propagules of each species were planted in common gardens at tidal elevations corresponding to lowest low water (LLW), mean water (MW), and highest high water (HHW). Sixty-nine percent of Rhizophora seedlings planted at MW and 56% of those planted at LLW survived 1 year. Forty-seven percent of MW Avicennia seedlings also survived 1 year. No individuals of either species survived at HHW, and neither did any LLW Avicennia seedlings. Among the surviving Rhizophora seedlings, LLW seedlings grew more rapidly in terms of height, diameter, leaf production, and biomass than did MW seedlings. Insect herbivory was twice as high on MW seedlings as on LLW Rhizophora seedlings. We also examined the response of established Rhizophora seedlings to experimental removal of the adult Rhizophora canopy. Seedlings in canopy removal areas had higher survivorship, grew twice as fast, produced more leaves, and had less than half the herbivory of seedlings growing beneath an intact canopy. These results provide insights into underlying causes and maintenance of zonation in Caribbean mangrove forests.  相似文献   

5.
The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems ha–1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B × X–0.5083). The allometric equation for each tree component was highly significant (p<0.0001), with all r2 values greater than 0.90. The allometric relationship was used to estimate total aboveground biomass that ranged from 7.9 to 23.2 ton ha–1. Rhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.  相似文献   

6.
The red mangrove (Rhizophora mangle L.) in southern Floridaoccurs frequently in two distinct growth forms, tall and scrubplants, with the scrub form usually found in coastal inlandareas having a higher fluctuation of soil water salinity. Inthe present study, effects of constant and fluctuating salinitieson leaf gas exchange and plant growth of red mangrove seedlingswere investigated under greenhouse conditions. Both constantand fluctuating salinity treatments significantly affected leafgas exchange and plant growth of red mangrove seedlings. Seedlingssubjected to the fluctuating salinity with the mean of both100 and 250 mol m–3 NaCl showed significantly lower photosynthesisand plant growth than those subjected to the corresponding constantsalinity with the same mean. The photosynthetic and growth ratesof the seedlings under these fluctuating treatments were aslow as, or even lower than those expected if they were growingunder the high constant salinity of their respective fluctuationtreatments. Seedlings subjected to the fluctuating salinitywith the mean of 500 mol m–3 NaCl, however, demonstratedslightly higher CO2 assimilation rate and stomatal conductance,but the same plant growth rates as those under the constant500 mol m–3 NaCl treatment. These results suggest that,in general, fluctuating salinity has significant negative effectson photosynthesis and plant growth relative to constant salinitywith the same mean. If this finding can be applicable to fieldsituations, the low photosynthesis and plant growth observedpreviously in several scrub mangrove forests probably can beattributed in part to the salinity fluctuation of soil waterin these mangrove forests. Key words: Fluctuating salinity, photosynthesis, growth, growth forms, mangroves  相似文献   

7.
Field observations of seedlings and saplings of Avicennia marina showed patterns that correlated with salinity, light and sediment. Models that account for these observations were subsequently tested in a series of field experiments. Establishment varied within an estuary under controlled conditions but was not related to salinity or sediment type. Seedling survival was uniform over 3 years regardless of position in estuary and sediment type. Seedling densities and survival under canopies or in canopy gaps were not significantly different. However, seedling growth and density of saplings were greater in canopy gaps. Experiments involving manipulations of canopies showed no differences in seedling survival under canopies or in light gaps, but addition of slow-release fertilizer enhanced growth and survival in canopy gaps and under canopies. Long-term comparison of areas denuded of a canopy and with sediment disturbance showed enhanced establishment and survival when compared with areas with canopy gaps but with undisturbed sediments. Overall there appears to be no restriction to establishment of propagules within mangrove stands other than the supply of propagules and tidal or wave action. In contrast, recruitment to the sapling stage appears to be restricted by light and sediment resources. We suggest that propagules need to establish in a regeneration niche for seedling recruitment to the sapling stage. This differs from the view that seedlings in the under-storey are analogous to a seed pool in the soil.  相似文献   

8.
Ecosystem dynamics and the responses to climate change in mangrove forests are poorly understood. We applied the biogeochemical process model Biome-BGC to simulate the dynamics of net primary productivity (NPP) and leaf area index (LAI) under the present and future climate conditions in mangrove forests in Shenzhen, Zhanjiang, and Qiongshan across the southern coast of China, and in three monocultural mangrove stands of two native species, Avicennia marina and Kandelia obovata, and one exotic species, Sonneratia apetala, in Shenzhen. The soil hydrological process of the model was modified by incorporating a soil water (SW) stress index to account for the impact of the effective SW availability in the coastal wetland. Our modified Biome-BGC well predicted the dynamics of NPP and LAI in the mangrove forests at the study sites. We found that the six mangrove systems differed in sensitivity to variations in the effective SW availability. At the ecosystem level, however, soil salinity alone could not entirely explain the limitation of the effective SW availability on the productivity of mangrove forests. Increasing atmospheric CO2 concentration differentially affected growth of different mangrove species but only had a small impact on NPP (<7%); whereas a doubling of atmospheric CO2 concentration associated with a 2°C temperature rise would increase NPP by 14–19% across the three geographically separate mangrove forests and by 12% to as much as 68% across the three monocultural mangrove stands. Our simulation analysis indicates that temperature change is more important than increasing CO2 concentration in affecting productivity of mangroves at the ecosystem level, and that different mangrove species differ in sensitivity to increases in temperature and CO2 concentration.  相似文献   

9.

Background and aims

The Bragança Peninsula, in northern Brazil is characterized by macrotides (4 m) and specific edaphic conditions, which determine the local mangrove forest’s development. This study, conducted during the dry season evaluated the spatial patterns of Rhizophora mangle and Avicennia germinans species across an inundation gradient.

Methods

Along a transect of 700 m, measurements of structure forest, soil moisture, porewater salinity, extractable phosphorus (extr.-P) in sediments, and phosphorus in the leaves (leaf-P) were conducted.

Result

The A. germinans (100 %) occurred in high intertidal (HI) zone. A. germinans (59 %) and R. mangle (41 %) co-occurred in mid intertidal (MI) zone, while R. mangle (58 %) predominated in low intertidal (LI) zone, followed by A. germinans (37 %) and Laguncularia racemosa (5 %). Covariance analysis (ANCOVA) indicated that salinity and soil moisture means are significantly different between the mangrove forests, but do not correlate with inundation frequency (IF). The means of extr.-P were significantly different in mangrove forests and correlated with IF and leaf-P.

Conclusion

The inundation frequency, the availability of P in the sediments, phosphorus in the leaves and interstitial salinity are all important factors contributing to the distribution of the mangrove tree species A. germinans and R. mangle on the Bragança Peninsula.  相似文献   

10.
To evaluate the effects of canopy gaps and forest floor microsites (soil, fallen logs, root-mounds, buttresses and stumps) on regeneration of subalpine forests, the gap regeneration and seedling occurrence of conifers (Abies mariesii, Abies veitchii, Picea jezoensis var. hondoensis and Tsuga diversifolia) were studied in two stands of a subalpine old-growth forest, central Japan. The percentage of gap area to total surveyed area was 11.2–11.3% in the stands. Gap regeneration was not common for P. jezoensis var. hondoensis and T. diversifolia. In contrast, gap regeneration by advanced regeneration was relatively common for Abies. Seedling occurrence of P. jezoensis var. hondoensis and T. diversifolia was restricted on elevated surfaces such as stumps and root-mounds, while Abies seedlings could occur on soil as well as on elevated surfaces. Rotten stumps were the most favorable microsites for conifer seedling occurrence, which covered small area in the forest floor. Although canopy gaps were not always favorable for seedling occurrence, all conifer seedlings were larger under canopy gaps than under closed canopy. Canopy gaps and forest floor microsites clearly affected seedling occurrence and growth of conifers. This suggests that regeneration of conifers is related to the difference of growth advantage under canopy gaps and favorable microsites for seedling occurrence.  相似文献   

11.
Soil redox potentials and pore water sulfide concentrations on a mangrove island in the Belizean barrier reef system were significantly correlated with the presence of the aerial roots of mangrove trees. Sulfide concentrations were three to five times lower near the prop roots of Rhizophora mangle (red mangrove) and the pneumatophores of Avicennia germinans (black mangrove) than in adjacent (≤ 1 meter away) unvegetated sediment. Soil redox potentials were also significantly higher near the aerial roots. A comparison of the two species revealed that sulfide concentrations in the rhizosphere of R. mangle were as low as that of A. germinans. However, sulfide concentrations in areas occupied by the black mangrove were variable and a function of pneumatophore density. The occurrence of an oxidized rhizosphere around the roots of both species suggests that the adult trees are equally capable of exploiting reduced sediments as long as their respective pathways for root aeration are functional.  相似文献   

12.
Regeneration in fringe mangrove forests damaged by Hurricane Andrew   总被引:1,自引:0,他引:1  
Baldwin  Andrew  Egnotovich  Michael  Ford  Mark  Platt  William 《Plant Ecology》2001,157(2):151-164
Mangrove forests along many tropical coastlines are frequently andseverely damaged by hurricanes. The ability of mangrove forests to regeneratefollowing hurricanes has been noted, but changes that occur in vegetationfollowing disturbance by hurricane winds and storm tides have not been studied.We measured changes in plant community structure and environmental variables intwo fringe mangrove forests in south Florida, USA that experienced high windvelocities and storm tides associated with Hurricane Andrew (August1992). Loss of the forest canopy stimulated regeneration via seedlinggrowth and recruitment, as well as resprouting of some trees that survived thehurricane. Initial regeneration differed among species in both forests:Rhizophora mangle L. regenerated primarily via growth ofseedlings present at the time of the hurricane (i.e., release of advancerecruits), but many trees of Avicennia germinans(L.) Stearn and Laguncularia racemosa Gaertn.f.resprouted profusely from dormant epicormic buds. In one forest, which wasformerly dominated by Laguncularia, high densities ofRhizophora seedlings survived the hurricane and grew toform dense stands of saplings and small trees ofRhizophora. In the other forest, there were lowerdensitiesof surviving Rhizophora seedlings (possibly due tohigher storm tide), and extensive bare areas that were colonized byAvicennia, Laguncularia, andherbaceous species. This forest, predominantly Rhizophoraat the time of the hurricane, now contains stands of saplings and small treesofall three species, interspersed with patches dominated by herbaceous plants.These findings indicate that moderately damaged fringe forests may regenerateprimarily via release of Rhizophora advance recruits,leading to single-species stands. In severely damaged forests, seedlingrecruitment may be more important and lead to mixed-species stands.Regeneration of mangrove forests following hurricanes can involve differentpathways produced by complex interactions between resprouting capability,seedling survival, post-hurricane seedling recruitment, and colonizationby herbaceous vegetation. These differences in relative importance ofregeneration pathways, which may result in post-hurricane forestsdifferent from their pre-hurricane structure, suggest that models forregeneration of mangrove forests will be more complex than directregeneration models proposed for other tropical forests whereregeneration after hurricanes is dominated by resprouting.  相似文献   

13.
We examined the immediate effects of a hurricane (Hurricane Andrew, August 1992) in a coastal landscape in sub-tropical Florida, and then monitored stand recovery in Fringe mangrove sites of different productive capacity for 9 years after the disturbance. Structural impacts of the hurricane were confined almost entirely to forests within 200–300 m of the coast. Mortality and damage were concentrated on canopy individuals. Following the hurricane, rapid canopy recovery and the early onset of competition among Fringe forest stems, as evidenced by relatively high mortality of smaller individuals, magnified the initial dominance of hurricane survivors and early-established seedlings over later cohorts, and limited recruitment to the brief period prior to canopy closure. Changes in the relative abundance of the two dominant mangrove species following disturbance varied strongly along the productivity gradient. The shade-tolerant Rhizophora mangle L. generally became the overwhelming canopy dominant in the competitive environment of the recovering Coastal Fringe forest following hurricane, but the shade-intolerant Laguncularia racemosa (L.) C.F. Gaertn was better represented in less productive Interior Fringe sites, where canopy closure was delayed. Site productivity is an important determinant of the success of mangrove species during post-hurricane stand development, and consequently of the zonation of communities in the coastal landscape.  相似文献   

14.
Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.  相似文献   

15.
Soil conditions of mangrove forests in southern Japan were found to correlate largely with zonal distributions of the species.Kandelia candel grew in soils with low salinity and low pH,Avicennia marina, Rhizophora stylosa andSonneratia alba in soils with high salinity and high pH, andBruguiera gymnorrhiza in soil with a wide range of pH but limited range of salinity.Lumnitzera racemosa colonized soil with a wide range of pH and medium salinity. Seedlings ofKandelia candel, Bruguiera gymnorrhiza andRhizophora stylosa were planted in soils with differing salinity and pH. Optimum seedling growth ofKandelia, Bruguiera andRhizophora occurred when plants were cultivated in soils similar to those of their natural habitats, suggesting that growth of mangrove species and their zonal distributions were regulated by salinity and soil pH.  相似文献   

16.
The purpose of this study was to determine the seasonal water use patterns of dominant macrophytes coexisting in the coastal Everglades ecotone. We measured the stable isotope signatures in plant xylem water of Rhizophora mangle, Cladium jamaicense, and Sesuvium portulacastrum during the dry (DS) and wet (WS) seasons in the estuarine ecotone along Taylor River in Everglades National Park, FL, USA. Shallow soilwater and deeper groundwater salinity was also measured to extrapolate the salinity encountered by plants at their rooting zone. Average soil water oxygen isotope ratios (δ 18O) was enriched (4.8 ± 0.2‰) in the DS relative to the WS (0.0 ± 0.1‰), but groundwater δ 18O remained constant between seasons (DS: 2.2 ± 0.4‰; WS: 2.1 ± 0.1‰). There was an inversion in interstitial salinity patterns across the soil profile between seasons. In the DS, shallow water was euhaline [i.e., 43 practical salinity units (PSU)] while groundwater was less saline (18 PSU). In the WS, however, shallow water was fresh (i.e., 0 PSU) but groundwater remained brackish (14 PSU). All plants utilized 100% (shallow) freshwater during the WS, but in the DS R. mangle switched to a soil–groundwater mix (δ 55% groundwater) while C. jamaicense and S. portulacastrum continued to use euhaline shallow water. In the DS, based on δ 18O data, the roots of R. mangle roots were exposed to salinities of 25.4 ± 1.4 PSU, less saline than either C. jamaicense (39.1 ± 2.2 PSU) or S. portulacastrum (38.6 ± 2.5 PSU). Although the salinity tolerance of C. jamaicense is not known, it is unlikely that long-term exposure to high salinity is conducive to the persistence of this freshwater marsh sedge. This study increases our ecological understanding of how water uptake patterns of individual plants can contribute to ecosystem levels changes, not only in the southeast saline Everglades, but also in estuaries in general in response to global sea level rise and human-induced changes in freshwater flows.  相似文献   

17.

Background

Micro-tidal wetlands are subject to strong seasonal variations of soil salinity that are likely to increase in amplitude according to climate model predictions for the Caribbean. Whereas the effects of constant salinity levels on the physiology of mangrove species have been widely tested, little is known about acclimation to fluctuations in salinity.

Aims and methods

The aim of this experiment was to characterize the consequences of the rate of increase in salinity (slow versus fast) and salinity fluctuations over time versus constant salt level. Seedling mortality, growth, and leaf gas exchange of three mangrove species, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle were investigated in semicontrolled conditions at different salt levels (0, 685, 1025, and 1370 mM NaCl).

Results

Slow salinity increase up to 685 mM induced acclimation, improving the salt tolerance of A. germinans and L. racemosa, but had no effect on R. mangle. During fluctuations between 0 and 685 mM, A. germinans and R. mangle were not affected by a salinity drop to zero, whereas L. racemosa took advantage of the brief freshwater episode as shown by the durable improvement of photosynthesis and biomass production.

Conclusions

This study provides new insights into physiological resistance and acclimation to salt stress. We show that seasonal variations of salinity may affect mangrove seedlings’ morphology and physiology as much as annual mean salinity. Moreover, more severe dry seasons due to climate change may impact tree stature and species composition in mangroves through higher mortality rates and physiological disturbance at the seedling stage.  相似文献   

18.
Tropical mangrove forests are characterized by clear zonation along a tidal gradient, and it has been supposed that the zonation is primarily controlled by soil factors. However, effects of disturbance on mangrove forests are still not well understood and may play an important role on the vegetation patterns and forest dynamics in some forest formations. In this study, the pattern of disturbance regime and its effects on regeneration of tropical mangrove forests along a tidal gradient were investigated in Ranong, Thailand. We established one or two 0.5 ha plots in four vegetation zones, i.e. Sonneratia albaAvicennia alba zone, Rhizophora apiculata zone, Ra – Bruguiera gymnorrhiza zone, Ceriops tagalXylocarpus spp. zone. Gap size (percentage gap area to total study area and individual gap size) was the largest in Sa–Aa zone which is located on the most seaward fringe, and it declined from seaward to inland. Canopy trees of S. alba and A. alba had stunted trunks and showed low tree density. On the contrary, canopy dominants in the other three inland zones, e.g. R. apiculata, B. gymnorrhiza, and Xylocarpus spp., had slender trunks and showed high tree density. Accordingly, differences in disturbance regime among the four zones were resulted from the forest structural features of each zone. Disturbance regime matched with regeneration strategies of canopy dominants. Seedlings and saplings of S. alba and A. alba, which need sunny condition for their growth, were abundant in gaps than in understorey. By contrast, R. apiculata, B. gymnorrhiza, and Xylocarpus spp., which can tolerate less light than S. alba and A. alba, had greater seedling and sapling density under closed canopy than gaps. Many large gaps may enhance the abundance of S. alba and A. alba in Sa–Aa zone, and a few small gaps may prevent the light demanding species to establish and grow in the other inland zones. Correspondence of disturbance regime and regeneration strategies (e.g. light requirement) of canopy dominants may contribute to the maintenance of the present species composition in each of the vegetation zones.  相似文献   

19.
We compared colonization, growth and succession from 1989 to 2000 in a restored mangrove site and in gap and closed canopy sites in a natural mangrove forest. The restored site was created in 1982 and planted with Rhizophora mangle (≈2 m−2) propagules. By 1989, Laguncularia racemosa, with densities up to 12.9 tree m−2, was a dominant in all plots, although densities were greater at edge plots relative to inner plots, and near open water (west plots) relative to further inland (east plots), and in tall mangrove plots relative to scrub plots. Rhizophora mangle (1989 tree densities about 2 m−2) was a codominant in inner and scrub plots, while Avicennia germinans had the lowest densities (<1 tree m−2) in all plots. From 1989 to 2000 L. racemosa experienced reduced recruitment and apparent density-dependent mortality of canopy individuals in plots with high initial densities. Scrub plots experienced high rates of colonization by R. mangle and L. racemosa, rapid growth in height of all species (1989–1996), followed by a dieoff of L. racemosa in later years (1997–2000) as the canopy came to resemble that of tall mangrove plots. Colonization and growth rates were lower in gap and closed canopy regions of the natural forest relative to rates in the restored site. After 11 years, densities of L. racemosa were 10–20× lower and R. mangle slightly less in the gap relative to densities in tall mangrove plots in the restored site at the same age. Although the restored stand had converged with the natural forest by 2000 in terms of some factors such as species richness, vegetation cover, litterfall, and light penetration, trees were still much smaller and stem densities much higher. Full development of mature structure and ecological function will likely require decades more development.  相似文献   

20.
Sousa WP  Quek SP  Mitchell BJ 《Oecologia》2003,137(3):436-445
Current theory predicts that in low-density, seed-limited plant populations, seed predation will be more important than competition in determining the number of individuals that reach maturity. However, when plant density is high, competition for microsites suitable for establishment and growth is expected to have a relatively greater effect. This dichotomous perspective does not account for situations in which the risk of seed predation differs inside versus outside recruitment microsites. We report the results of a field experiment and sampling studies that demonstrate such an interaction between microsite quality and the risk of propagule predation in mangrove forests on the Caribbean coast of Panama, where it appears to play a key role in shaping the demography and dynamics of the mangrove, Rhizophora mangle. Rhizophora's water-borne propagules establish wherever they strand, but long-term sampling revealed that only those that do so in or near lightning-created canopy gaps survive and grow to maturity. These microsites afford better growth conditions than the surrounding understory and, as importantly, provide a refuge from predation by the scolytid beetle, Coccotrypes rhizophorae. This refuge effect was confirmed with a field experiment in which Rhizophora seedlings were planted at different positions relative to gap edges, from 5 m inside to 20 m outside the gap. Mortality due to beetle attack increased linearly from an average of 10% inside a gap to 72% at 20 m into the forest. The interaction between canopy disturbance and propagule predation may be having a large impact on the composition of our study forests. Being shade-tolerant, Rhizophora seedlings that escape or survive beetle attack can persist in the understory for years. However, the high rate of beetle-induced mortality effectively eliminates the contribution of advance regeneration by Rhizophora saplings to gap succession. This may explain why the shade-intolerant mangrove, Laguncularia racemosa, is able to co-dominate the canopy in low intertidal forests at our study sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号