首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secondary Ion Mass Spectrometry (SIMS) is a well established method for sensitive surface atomic and molecular analysis. Protein analysis with conventional SIMS has been attempted numerous times; however it delivers exclusively fragment peaks assigned to α-amino acids or immonium ions. In this paper we report experiments where direct sequence information could be measured thanks to a combination of HPLC separation with matrix enhanced SIMS (ME-SIMS) on tryptic digests of intact proteins. We employ peptide mass fingerprinting (PMF) and protein identification through the detection of HPLC-separated digests of Savinase (Sav.) and bovine serum albumin (BSA), followed by MASCOT search. This is the first time that the possibility of full protein identification using LC-ME-SIMS is demonstrated in a classic proteomics workflow and that a 69kDa protein is identified with SIMS. These results demonstrate both the relevance and the potential of LC-ME-SIMS in future high resolution proteomics studies.  相似文献   

2.
With unmatched mass resolution, mass accuracy, and exceptional detection sensitivity, Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) has the potential to be a powerful new technique for high-throughput metabolomic analysis. In this study, we examine the properties of an ultrahigh-field 12-Tesla (12T) FTICR-MS for the identification and absolute quantitation of human plasma metabolites, and for the untargeted metabolic fingerprinting of inbred-strain mouse serum by direct infusion (DI). Using internal mass calibration (mass error ≤1 ppm), we determined the rational elemental compositions (incorporating unlimited C, H, N and O, and a maximum of two S, three P, two Na, and one K per formula) of approximately 250 out of 570 metabolite features detected in a 3-min infusion analysis of aqueous extract of human plasma, and were able to identify more than 100 metabolites. Using isotopically-labeled internal standards, we were able to obtain excellent calibration curves for the absolute quantitation of choline with sub-pmol sensitivity, using 500 times less sample than previous LC/MS analyses. Under optimized serum dilution conditions, chemical compounds spiked into mouse serum as metabolite mimics showed a linear response over a 600-fold concentration range. DI/FTICR-MS analysis of serum from 26 mice from 2 inbred strains, with and without acute trichloroethylene (TCE) treatment, gave a relative standard deviation (RSD) of 4.5%. Finally, we extended this method to the metabolomic fingerprinting of serum samples from 49 mice from 5 inbred strains involved in an acute alcohol toxicity study, using both positive and negative electrospray ionization (ESI). Using these samples, we demonstrated the utility of this method for high-throughput metabolomics, with more than 400 metabolites profiled in only 24 h. Our experiments demonstrate that DI/FTICR-MS is well-suited for high-throughput metabolomic analysis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments.  相似文献   

4.
Soybean (Glycine max) seed contain some proteins that are allergenic to humans and animals. However, the concentration of these allergens and their expression variability among germplasms is presently unknown. To address this problem, 10 allergens were quantified from 20 nongenetically modified commercial soybean varieties using parallel, label-free mass spectrometry approaches. Relative quantitation was performed by spectral counting and absolute quantitation was performed using multiple reaction monitoring (MRM) with synthetic, isotope-labeled peptides as internal standards. During relative quantitation analysis, 10 target allergens were identified, and five of these allergens showed expression levels higher than technical variation observed for bovine serum albumin (BSA) internal standard (~11%), suggesting expression differences among the varieties. To confirm this observation, absolute quantitation of these allergens from each variety was performed using MRM. Eight of the 10 allergens were quantified for their concentration in seed and ranged from approximately 0.5 to 5.7 μg/mg of soy protein. MRM analysis reduced technical variance of BSA internal standards to approximately 7%, and confirmed differential expression for four allergens across the 20 varieties. This is the first quantitative assessment of all major soybean allergens. The results show the total quantity of allergens measured among the 20 soy varieties was mostly similar.  相似文献   

5.
Fundamental advances in secondary ion mass spectrometry (SIMS) now allow for the examination and characterization of lipids directly from biological materials. The successful application of SIMS-based imaging in the investigation of lipids directly from tissue and cells are demonstrated. Common complications and technical pitfalls are discussed. In this review, we examine the use of cluster ion sources and cryogenically compatible sample handling for improved ion yields and to expand the application potential of SIMS. Methodological improvements, including pre-treating the sample to improve ion yields and protocol development for 3-dimensional analyses (i.e. molecular depth profiling), are also included in this discussion. New high performance SIMS instruments showcasing the most advanced instrumental developments, including tandem MS capabilities and continuous ion beam compatibility, are described and the future direction for SIMS in lipid imaging is evaluated.  相似文献   

6.
Secondary ion mass spectrometry (SIMS) permits the detection of stable and radioactive elements in microvolume. Based on the ablation of specimens by ion bombardment, this mass spectrometry method allows a rapid assessment of trace elements in biological samples and enables accurate isotopic ratio determination. In this work, an application of SIMS in studies involving element microdistribution is illustrated on the basis of analyses of duodenal tissue sections from rats contaminated with either cerium or thorium. For this purpose, tests are performed with SIMS to analyze tissue sections obtained 12, 24 and 48 hr after contamination. In this report, strengths and limitations of SIMS are pointed out as an important tool in biological research.  相似文献   

7.
This paper reviews the most recent methodological advances in the field of biological imaging using dynamic secondary ion mass spectrometry (SIMS). After a short reminder of the basic principle of SIMS imaging, the latest high-resolution dynamic SIMS equipment is briefly described. This new ion nanoprobe (CAMECA NanoSIMS 50) has a lateral resolution of less than 50 nm with primary Cs+ ion, the ability to detect simultaneously 5 different ions from the same micro-volume and a very good transmission even at high mass resolution (60% at M/DeltaM=5000). Basic considerations related to sample preparation, mass resolution and primary ion implantation are given. The decisive capability of this new instrument, and more generally of high-resolution dynamic SIMS imaging in biology, are illustrated with the most recent examples of utilization.  相似文献   

8.
The present study used isobaric tags for relative and absolute quantitation (iTRAQ) to identify novel targets in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The expression of 41 proteins was significantly altered in the inflamed spinal cord. Twenty of these are implicated in EAE for the first time and many have previously been shown to play a role in antigen processing, inflammation, neuroprotection, or neurodegeneration.  相似文献   

9.
The virtues and limitations of SIMS ion microscopy are compared with other spectroscopic techniques applicable to biological microanalysis, with a special emphasis on techniques for elemental localization in biological tissue (electron, X-ray, laser, nuclear, ion microprobes). Principal advantages of SIMS include high detection sensitivity, high depth resolution, isotope specificity, and possibilities for three-dimensional imaging. Current limitations, especially in comparison to X-ray microanalysis, center on lateral spatial resolution and quantification. Recent SIMS instrumentation advances involving field emission liquid metal ion sources and laser post-ionization will help to minimize these limitations in the future. The molecular surface analysis capabilities of static SIMS, especially with the new developments in commercial time-of-flight spectrometers, are promising for application to biomimetic, biomaterials, and biological tissue or cell surfaces. However, the direct microchemical imaging of biomolecules in tissue samples using SIMS will be hindered by limited concentrations, small analytical volumes, and the inefficiencies of converting surface molecules to structurally significant gas phase ions. Indirect detection using elemental or isotopically tagged molecules, however, shows considerable promise for molecular imaging studies using SIMS ion microscopy.  相似文献   

10.
同位素标记相对和绝对定量技术研究进展   总被引:1,自引:0,他引:1  
定量蛋白质组学是蛋白质研究的前沿学科。目前常用的定量蛋白质组学研究技术有荧光差异凝胶电泳(DIGE)、同位素亲和标记(ICAT)等。同位素标记相对和绝对定量(iTRAQ)技术是近年来最新开发的一种新的蛋白质组学定量研究技术。结合非凝胶串联质谱技术,该技术可对复杂样本、细胞器、细胞裂解液等样本进行相对和绝对定量研究,具有较好的定量效果、较高的重复性,并可对多达四种不同样本同时进行定量分析。本文对 iTRAQ 技术的原理、实验方法及应用进展进行了综述。  相似文献   

11.
The capability of Time of Flight–Secondary Ion Mass Spectrometry (ToF‐SIMS) of analysing molecular archaeal biomarkers in geobiological samples was tested and demonstrated. Using a bismuth cluster primary ion source, isopranyl glycerol di‐ and tetraether core lipids were detected in small amounts of total organic extracts from methanotrophic microbial mats, simultaneously and without further chemical treatment and chromatographic separation. ToF‐SIMS was also employed to track the distribution of fossilized ether lipids in a massive carbonate (aragonite) microbialite that precipitated as a result of the microbial anaerobic oxidation of methane. An unambiguous signal was obtained when analysing a freshly broken rock surface (base of a microdrill core). Though some limitation occurred due to µm‐topographical effects (sample roughness), it was possible to display the abundance of high molecular weight (C86) of tetraethers exposed in particular regions of the rock surface. ‘Molecular mapping’ revealed that a part of these molecules was encased within the rock fabric in a cluster‐like distribution that might trace the arrangement of the calcifying microbial colonies in the once active mat system. The results reveal promising perspectives of ToF‐SIMS for (i) the quasi‐nondestructive analysis of lipids in extremely small geobiological samples at low concentrations; (ii) resolving the spatial distribution of these compounds on a µm2‐ to cm2‐scale; and (iii) the more exact assignment of lipid biomarkers to their biological source.  相似文献   

12.
Mass spectrometric sensitivity data for the compounds cholesterol, cholestane, DDT, decafluorotriphenylphosphine, morphine, LSD and methyl stearate have been developed over a period of time and under a variety of conditions. This information is presented on both a relative and an absolute basis. With the exception of morphine, relative sensitivies were reproducible to within a factor of three over a six month period. This reproducibility facilitates quantitation and a single standard can be used for calibration of organic compounds from various classes. Detection limits of 50 femtograms for LSD are realized for samples introduced via the direct inlet probe.  相似文献   

13.
This review discusses the application of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and magnetic sector SIMS with high lateral resolution performed on a Cameca NanoSIMS 50(L) to imaging lipids. The similarities between the two SIMS approaches and the differences that impart them with complementary strengths are described, and various strategies for sample preparation and to optimize the quality of the SIMS data are presented. Recent reports that demonstrate the new insight into lipid biochemistry that can be acquired with SIMS are also highlighted. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

14.
Proteomics analysis is important for characterizing tissues to gain biological and pathological insights, which could lead to the identification of disease-associated proteins for disease diagnostics or targeted therapy. However, tissues are commonly embedded in optimal cutting temperature medium (OCT) or are formalin-fixed and paraffin-embedded (FFPE) in order to maintain tissue morphology for histology evaluation. Although several tissue proteomic analyses have been performed on FFPE tissues using advanced mass spectrometry (MS) technologies, high-throughput proteomic analysis of OCT-embedded tissues has been difficult due to the interference of OCT in the MS analysis. In addition, molecules other than proteins present in tissues further complicate tissue proteomic analysis. Here, we report the development of a method using chemical immobilization of proteins for peptide extraction (CIPPE). In this method, proteins are chemically immobilized onto a solid support; interferences from tissues and OCT embedding are removed by extensive washing of proteins conjugated on the solid support. Peptides are then released from the solid phase by proteolysis, enabling MS analysis. This method was first validated by eliminating OCT interference from a standard protein, human serum albumin, where all of the unique peaks contributed by OCT contamination were eradicated. Finally, this method was applied for the proteomic analysis of frozen and OCT-embedded tissues using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and two-dimensional liquid chromatography tandem mass spectrometry. The data showed reproducible extraction and quantitation of 10,284 proteins from 3996 protein groups and a minimal impact of OCT embedding on the analysis of the global proteome of the stored tissue samples.  相似文献   

15.
A series of silver and copper coordination complexes has been studied using secondary ion mass spectrometry (SIMS). Results are presented for the monomeric silver(I) complexes [Ag(CNR)4]X, where R = cyclohexyl for X  ClO4, and R = methyl or t-butyl for X  PF6. Likewise, Cu(I) complexes [Cu(CNR)4]PF6, where R =methyl, t-butyl, or cyclohexyl, were examined. The presence of AgL2+ (L represents the intact RNC ligand) and the absence of AgL3+ and AgL4+ species attests to the gas phase stability of two-coordinate silver(I). Similar results to these were obtained for the Cu(I) complexes, with the exception of [Cu(CNCH3)4]PF6 whose spectrum contains CuL4+, CuL3+, CuL2+, CuL+, and Cu+ ions. The latter result reflects the enhanced stability of the tetrahedral Cu(I) geometry compared to Ag(I) in the gas phase. Cross labeling experiments and isotopic labeling studies have provided insights into fragmentation mechanisms. Ligand exchange occurs when mixtures are examined. These exchange reactions provide evidence for extensive molecular mixing which can accompany SIMS even under low primary ion dose conditions. Cluster ion formation as well as the observation of α-cleavage of the NC bonds of RNC ligands have been observed and these results are discussed. Granulated graphite and ammonium chloride were employed to study matrix effects. Granulated graphite enhanced NC cleavage for the silver complexes but had little effect on the relative abundance of silver cluster ions. On the other hand, copper cluster ions were more sensitive to matrix effects.  相似文献   

16.
Gelatin films containing water-soluble salts of lithium, rubidium, strontium, or copper were analyzed by secondary ion mass spectrometry. Calcium and vanadium organometallic compounds in an epoxy resin were similarly analyzed. A linear relationship between positive secondary ion intensity and ion concentration was observed over several decades of ion concentration and at absolute concentrations as low as 1 wt ppm. These standards can be used for quantitative analysis of tissue or other biological material in epoxy resins, providing a highly sensitive method for simultaneous quantitation and localization of elements.  相似文献   

17.
Protein oxidation is linked to cellular stress, aging, and disease. Protein oxidations that result in reactive species are of particular interest, since these reactive oxidation products may react with other proteins or biomolecules in an unmediated and irreversible fashion, providing a potential marker for a variety of disease mechanisms. We have developed a novel system to identify and quantitate, relative to other states, the sites of oxidation on a given protein. This presents a significant advancement over current methods, combining strengths of current methods and adding the abilities to multiplex, quantitate, and probe more modified amino acids. A specially designed Oxidation-dependent carbonyl-specific Element-Coded Affinity Mass Tag (O-ECAT), AOD, ((S)-2-(4-(2-aminooxy)-acetamido)-benzyl)-1,4,7,10-tetraazacyclododecane-N,N',N' ',N'-tetraacetic acid, is used to covalently tag the residues of a protein oxidized to aldehyde or keto end products. O-ECAT can be loaded with a variety of metals, which yields the ability to generate mass pairs and multiplex multiple samples. The O-ECAT moiety also serves as a handle for identification, quantitation, and affinity purification. After proteolysis, the AOD-tagged peptides are affinity purified and analyzed by nanoLC-FTICR-MS (nanoliquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry), which provides high specificity in extracting coeluting AOD mass pairs with a unique mass difference and allows relative quantitation based on isotopic ratios. Using this methodology, we have quantified and mapped the surface oxidation sites on a model protein, recombinant human serum albumin (rHSA) in its native form (as purchased) and after FeEDTA oxidation both at the protein and amino acid levels. A variety of modified amino acid residues including lysine, arginine, proline, histidine, threonine, aspartic, and glutamic acids, were found to be oxidized to aldehyde and keto end products. The sensitivity of this methodology is shown by the number of peptides identified, twenty peptides on the native protein and twenty-nine after surface oxidation using FeEDTA and ascorbate. All identified peptides map to the surface of the HSA crystal structure, validating this method for identifying oxidized amino acids on protein surfaces. In relative quantitation experiments between FeEDTA oxidation and native protein oxidation, identified sites showed different relative propensities toward oxidation, independent of amino acid residue. This novel methodology not only has the ability to identify and quantitate oxidized proteins but also yields site-specific quantitation on a variety of individual amino acids. We expect to extend this methodology to study disease-related oxidation.  相似文献   

18.
Ceramides play a crucial role in divergent signaling events, including differentiation, senescence, proliferation, and apoptosis. Ceramides are a minor lipid component in terms of content; thus, highly sensitive detection is required for accurate quantification. The recently developed isobaric tags for relative and absolute quantitation (iTRAQ) method enables a precise comparison of both protein and aminophospholipids. However, iTRAQ tagging had not been applied to the determination of sphingolipids. Here we report a method for the simultaneous measurement of multiple ceramide and monohexosylceramide samples using iTRAQ tags. Samples were hydrolyzed with sphingolipid ceramide N-deacylase (SCDase) to expose the free amino group of the sphingolipids, to which the N-hydroxysuccinimide group of iTRAQ reagent was conjugated. The reaction was performed in the presence of a cleavable detergent, 3-[3-(1,1-bisalkyloxyethyl)pyridine-1-yl]propane-1-sulfonate (PPS) to both improve the hydrolysis and ensure the accuracy of the mass spectrometry analysis performed after iTRAQ labeling. This method was successfully applied to the profiling of ceramides and monohexosylceramides in sphingomyelinase-treated Madin Darby canine kidney (MDCK) cells and apoptotic Jurkat cells.  相似文献   

19.
The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM‐based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti‐TnI mAb‐coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method.  相似文献   

20.
Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or "sphingolipidomic" methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号