首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
K A Elias  C A Blake 《Life sciences》1980,26(10):749-755
Experiments were undertaken to investigate if changes occur at the level of the anterior pituitary gland to result in selective follicle-stimulating hormone (FSH) release during late proestrus in the cyclic rat. At 1200 h proestrus, prior to the preovulatory luteinizing hormone (LH) surge in serum and the accompanying first phase of FSH release, serum LH and FSH concentrations were low. At 2400 h proestrus, after the LH surge and shortly after the onset of the second or selective phase of FSH release, serum LH was low, serum FSH was elevated about 4-fold, pituitary LH concentration was decreased about one-half and pituitary FSH concentration was not significantly decreased. During a two hour invitro incubation, pituitaries collected at 2400 h released nearly two-thirds less LH and 2.5 times more FSH than did pituitaries collected at 1200 h. Addition of luteinizing hormone releasing hormone (LHRH) to the incubations caused increased pituitary LH and FSH release. However, the LH and FSH increments due to LHRH in the 2400 h pituitaries were not different from those in the 1200 h pituitaries. The results indicate that a change occurs in the rat anterior pituitary gland during the period of the LH surge and first phase of FSH release which results in a selective increase in the basal FSH secretory rate. It is suggested that this change is primarily responsible for the selective increase in serum FSH which occurs during the second phase of FSH release.  相似文献   

2.
This paper further substantiates the physiological role of beta-endorphin (beta-END) in the control of the cyclic LH secretion and provides new data on the interactions between 17 beta-estradiol (17 beta-E2) and beta-END at both the hypothalamic and pituitary levels. At the hypothalamic level, during the estrous cycle in rats, beta-END concentrations were highest on diestrus I in the arcuate nucleus, median preoptic area and median eminence and lowest at the time of the preovulatory 17 beta-E2 surge on proestrus, before the subsequent preovulatory hypothalamic GnRH and plasma LH surges. Data obtained in ovariectomized 17 beta-E2-treated ewes support the direct involvement of 17 beta-E2 in changes in beta-END and GnRH concentrations in these hypothalamic areas. At the anterior pituitary level, in vitro results obtained using anterior pituitaries from the proestrus morning cycling female rat have shown that 17 beta-E2 strongly suppresses beta-END secretion and that GnRH stimulates the release of beta-END. Furthermore, marked fluctuations were observed for plasma beta-END throughout the menstrual cycle in the woman. Low beta-END concentrations were observed in the period preceding the LH preovulatory surge. Taken together, these results show that: (1) decreases in hypothalamic beta-END concentrations, which are controlled at least by circulating levels of 17 beta-E2, modulate GnRH synthesis and/or release and contribute to the mechanisms which initiate the LH surge; (2) anterior pituitary beta-END might be involved in the mechanisms which terminate the LH surge.  相似文献   

3.
The present series of experiments was conducted in an attempt to correlate previously reported dose-dependent and site-selective inhibitory effects of an antiestrogen, CI-628, on 17 beta-estradiol (E2)-receptor interactions in the anterior pituitary gland (AP) and hypothalamus with its effects on the preovulatory surges of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin. The effects of CI-628 on the response of the AP to luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) also were examined. In the first study, rats exhibiting 4-day estrous cycles were injected with various doses (0.02, 0.20, 2.0, and 20 mg/kg) of CI-628 or vehicle at 0900 h on diestrus-2 and proestrus. The preovulatory LH surge and both preovulatory and secondary FSH surges were marginally affected by 0.02 mg/kg CI-628, but were completely abolished by higher doses. In contrast, a dose of 0.20 mg/kg only delayed the prolactin surge; however, higher doses were effective in extinguishing cyclic prolactin release. In a second experiment, CI-628 in rats treated on diestrus-2 and proestrus exerted a dose-dependent suppression of the AP LH response to an initial injection of LHRH on proestrous afternoon in rats whose endogenous LH surges were blocked by phenobarbital. However, AP LH responses to a second LHRH injection to assess the self-priming capacity of LHRH were attenuated only in rats given 0.20, 2.0, and 20 mg/kg CI-628. Contrastingly, the AP prolactin response to TRH was suppressed only in rats given 0.20 mg/kg CI-628.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Previous studies have shown that substance P (SP), an undecapeptide widely distributed in the gastrointestinal tract and in the peripheral and central nervous system, is a putative regulatory peptide involved in the control of reproductive function. Specifically, SP inhibited, at the anterior pituitary (AP) level, the stimulatory action of a physiological concentration (10(-8) M) of Gonadotropin Releasing Hormone (GnRH) on the release of the luteinizing hormone (LH). In the present work, we have demonstrated the presence of specific SP binding sites in the AP and related changes in the number of these sites to GnRH receptor number, hypothalamic SP and GnRH content and LH secretion during the rat estrous cycle. High affinity saturable SP binding sites (Kd, 1.5 approximately equal to 10 nM) were demonstrated in AP membranes using [3H]-SP or a novel analog, [125I]-(D-Tyr0, NorLeu11)SP. The binding affinity of SP fragments decreased with progressive removal of amino acid residues from N or C termini of the molecule. Other neuropeptides had low affinity for the SP binding sites. During the rat estrous cycle, SP and GnRH binding capacity of the anterior pituitary were inversely related. At the time of the proestrous LH surge, the AP binding capacity was low for GnRH but high for SP. The highest content of SP in the hypothalamus were recorded during the afternoon of proestrus when hypothalamic GnRH levels were lowest and the preovulatory surge occurred. These studies have established the presence of high affinity specific binding sites for SP in the AP which alter during the estrous cycle in a manner appropriate for mediating the direct inhibitory effects of SP on LH release in vitro.  相似文献   

5.
Carbonyl reductase activity and content in the rat ovary were measured at various stages of the estrous cycle, and the enzyme protein in the ovary was localized by immunohistochemistry. The enzyme activity increased after the preovulatory surge of luteinizing hormone (LH) on proestrus, and the enzyme content began to increase prior to the LH surge. Although the enzyme content reached the highest level at 2000 h and remained at a plateau for 8 h, the enzyme activity increased linearly until it reached the highest level at 0800 h on the morning of estrus. At their maximum, enzyme activity and content were approximately 1.5-fold and 2-fold greater, respectively, then basal diestrus values. The enzyme protein amounted to 1-4% of the ovarian cytosolic protein. An immunohistochemical study revealed that the enzyme was primarily localized in interstitial gland cells and theca interna cells of secondary and Graafian follicles as well as atretic follicles.  相似文献   

6.
Serum and pituitary prolactin (PRL) concentrations were measured during the estrous cycle of the rat with particular attention to the afternoons of the days of proestrus and estrus. Homogenizing machines, a Polytron and Sonifier, were used to extract PRL from the pituitary gland. The effects of ether anesthesia and restraint were also examined on the afternoons of both proestrus and estrus. The occurrence of a surge in PRL secretion during proestrus was confirmed with a peak at 1500 h, and this was accompanied by a decline in pituitary PRL content. A relatively high level of serum PRL was observed in the afternoon of estrus, during which time pituitary PRL content increased progressively. Ether anesthesia had no effect on the proestrus PRL surge, while restraint enhanced it. On the afternoon of estrus, restraint completely suppressed the rise in serum PRL, but ether anesthesia failed to suppress it completely. From these results, the following conclusions were drawn: 1) the PRL surge on the afternoon of proestrus occurs without synthesis of the hormone in the pituitary; 2) PRL secretion on the afternoon of estrus is accompanied by its synthesis in the gland; 3) the PRL response is distinct for each type of stress applied; and 4) PRL secretion is thus regulated by different mechanisms in proestrus and estrus.  相似文献   

7.
The purpose of the study was to induce estrus and ovulation in normal bitches using a combination of diethylstilbestrol (DES) and follicle stimulating hormone of porcine pituitary origin (FSH-P). Thirteen mature mongrel female dogs were divided into two groups, the first group was treated for estrus induction during late anestrus and the second group during mid-anestrus. The dogs were monitored by teasing, vaginal cytology, and hormonal assay during the induced (n = 13) and the previous spontaneous estrous cycle (n = 9). Six of eight and three of five bitches came into standing estrus in the first and second group, respectively. Of the bitches that came into estrus, three conceived in the first group and one in the second. The average induced litter size was 7.0 versus 7.5 for the colony. Based on vaginal cytology the induced proestrus and estrus lasted 1.7 (0 to 3) and 12.9 (4 to 24) d, respectively, while the spontaneous proestrus and estrus lasted 5.8 (0-17) and 12.8 (9-15) d, respectively. Progesterone profiles were similar between the induced and spontaneous estrous cycles, although the progesterone peak was higher during the spontaneous cycle. The preovulatory luteinizing hormone (LH) surge was observed in only one induced estrous cycle. Modest results were obtained with this therapy. However, the litter sizes were normal and the induced cycles were very similar to the physiologic ones. No side effects were seen with the oral form of DES.  相似文献   

8.
It has been described that throughout the estrous cycle of the rat, plasma prolactin (PRL) is basal except on proestrus afternoon when a preovulatory surge occurs. However, there have been controversies about PRL levels on the estrus day. Thus, the aim of this study was to evaluate the existence of a secondary surge of PRL on estrus afternoon and correlate it with plasma estradiol levels. The jugular vein of cycling rats was cannulated at 14:00 h on proestrus and a blood sample was withdrawn at 17:00 h for plasma LH measurement and determination of the preovulatory LH surge occurrence. In order to exclude the regular cycling rats that do not present the gonadotropins preovulatory surge and do not ovulate, only rats showing the LH surge on proestrus were considered in this study. Blood samples were collected hourly during estrus from midnight to 9:00 h (group 1) and from 10:00 to 18:00 h (group 2). In group 1, PRL showed a descending profile from midnight to 9:00 h, whereas the estradiol concentrations were constant. In group 2, a secondary surge of PRL was observed in 20 of 25 (80%) rats and plasma estradiol remained constant, but was higher in animals with the PRL surge. Thus the present data suggest the occurrence of a secondary surge of PRL in the afternoon of estrus that seems to be related to plasma estradiol levels of estrus day, which might exert only a permissive role in this surge generation.  相似文献   

9.
This study focused on expression of estradiol receptors (ER) during the estrous cycle. Labeling for ERalpha or beta antigens and luteinizing hormone (LH) or follicle-stimulating hormone (FSH) beta-subunits was done on freshly dispersed pituitary cells. The lowest expression of ERalpha and beta was seen in estrus (23% and 12%, respectively). Expression increased to 42-54% of pituitary cells by diestrus. In males, cells with ERalpha or beta were 37% or 20% of the population, respectively. ERalpha or beta and gonadotropin antigens were in 6-9% of pituitary cells from male rats. Early in the cycle (estrus and metestrus), less than 5% of pituitary cells expressed ERalpha or beta with gonadotropins. These values doubled to reach a peak of 10% during proestrus (just before ovulation). These data show that a rise in expression of both ERalpha and ERbeta is a part of preovulatory differentiation of pituitary gonadotropes.(J Histochem Cytochem 49:665-666, 2001)  相似文献   

10.
OBJECTIVE : The aim of the present report was to determine the possible modifications in rat pituitary LH isoforms induced by the spontaneous increase in GnRH at the time of the preovulatory gonadotropin surge. DESIGN: The changes in the quantitative pattern and relative proportions of pituitary LH isoforms in rats on the afternoon of proestrus [INT-P(PM)] were evaluated by comparison with other stages of the estrous cycle (diestrus-1, diestrus-2 and estrus) and ovariectomized (7 and 30 days earlier) animals killed in the morning and in the afternoon of the corresponding day. METHODS: The chromatofocusing technique (pH gradient 11.00-7.00) was used to analyze the different molecular species of intrapituitary LH. RESULTS: Pituitary LH from diestrus-1 animals, considered as a baseline pattern in the cycling rat, eluted as 11 isoforms distributed in pH 9.62-8.82, with greater percentages in pH 9.50-9.01. Except for INT-P(PM) pituitaries, there were no major differences in the pattern of LH heterogeneity in the pituitaries of rats from various stages of the cycle. In contrast, significant changes in the charge distribution and relative abundance of LH isoforms were found in the pituitaries from INT-P(PM) rats. INT-P(PM) pituitaries resolved in 16 LH isoforms with a significant shift to less alkaline pIs (pH 9.62-8.11), the more abundant being focused within pH 9.00-8.51. Conversely, a shift to more basic isoforms resulted after ovariectomy, leading to the accumulation of less mature isoforms in the gonadotrope. CONCLUSIONS: Presumably, the use of animals on INT-P(PM), at the time of the preovulatory LH surge, made it possible to discriminate such changes in LH isoform distribution. That GnRH, released in association with the rising phase of the LH surge, induces these changes in pituitary LH polymorphism appears to be the most likely possibility. In a previous study we demonstrated that GnRH stimulated galactose incorporation into LH in vitro. In the case of pituitaries from INT-P(PM) rats, the shift toward less alkaline isoforms could potentially result from sialylation of increased terminal galactose.  相似文献   

11.
Two trials were conducted to measure the progesterone (P(4)) decline and luteinizing hormone (LH) surge in serum subsequent to administration of a short half-life (short t (1 2 )) prostaglandin (PGF(2alpha)) or a long half-life (long t (1 2 )) prostaglandin analogue (fenprostalene) on Days 6 or 11 of the estrous cycle. Twenty-five crossbred Shorthorn and five Hereford heifers with a mean weight of 331.4 +/- 29.8 kg were used in both trials. The heifers were randomly allotted to receive either a short t (1 2 ) or long t (1 2 ) prostaglandin treatment on Day 6 or 11 of the estrous cycle. A crossover design for the main effect, treatment (type of prostaglandin), was conducted. Heifers that received PGF(2alpha) in Trial I were given fenprostalene in Trial II and vice versa. Stage of the estrous cycle (day) was the same for each heifer in both trials. Stage of estrous cycle was standardized to either Day 6 or 11 by administering Syncro-Mate B (SMB). Blood was collected every hour for 80 h post injection to quantify LH and P(4) concentrations. There were no significant differences (P > 0.05) between the short t (1 2 ) or long t (1 2 ) for either P(4) or LH profiles. In addition, no differences were detected between stages of the estrous cycle for the timing of the preovulatory surge of LH after prostaglandin administration.  相似文献   

12.
We have developed and validated a push-pull technique that allows focal perfusion of the ovary in unanesthetized freely moving rats. We have used this method to investigate the intraovarian secretion of catecholamines (dopamine, norepinephrine, epinephrine), oxytocin, beta-endorphin and gamma-amino-butyric acid (GABA) during the estrous cycle. Cycling animals were implanted with ovarian push-pull catheters and jugular vein catheters under ether anaesthesia on proestrus, estrus and diestrous Day 2. This procedure did not disrupt normal preovulatory release of prolactin and luteinizing hormone (LH). Thus, perfusion of the ovary and simultaneous monitoring of hormone levels in systemic blood in freely moving rats allow correlation of the temporal relationship of ovarian events with cyclic gonadotropin secretion. The results clearly indicate that a rise in ovarian norepinephrine occurs concomitant with the preovulatory surge in prolactin and LH. Ovarian beta-endorphin concentrations exhibit cyclic changes, whereas GABA release rates remain stable throughout the cycle. Oxytocin is secreted by ovarian tissue, and the secretion rate appears to be inversely related to prolactin. In view of the proposed involvement of ovarian nerves and particularly catecholamines in the process of follicular maturation and ovulation, our findings suggest a preovulatory activation of ovarian noradrenergic sympathetic neurons.  相似文献   

13.
Estradiol-2-hydroxylase, the enzyme responsible for the conversion of estrogens to catechol estrogens was measured in the brain of female rats at specific stages of the estrus cycle. Radiometric measurements of the enzyme activity in microsomal, mitochondrial, and synaptosomal fractions of the brain revealed a sharp increased in activity at proestrus just prior to the preovulatory LH surge. The enzyme activity declined to lower levels at diestrus and metestrus. No comparable fluctuations were noted in the liver enzyme. These changes in brain enzyme activity in conjunction with demonstrated positive feedback of exogenous catechol estrogens on pituitary LH release, suggest that a rise in endogenous catechol estrogen formation in the brain may be responsible for the physiological induction of the preovulatory LH surge.  相似文献   

14.
The neuropeptide pituitary adenylate cyclase activating polypeptide (ADCYAP 1, or PACAP) has been demonstrated to enhance gonadotropin-releasing hormone (GnRH)-induced gonadotropin secretion and regulate gonadotropin subunit gene expression in cultures of anterior pituitary cells. In the present study, we used in situ hybridization and real-time polymerase chain reaction to examine the expression of Pacap mRNA within the paraventricular nucleus (PVN) and anterior pituitary throughout the estrous cycle of the rat. Levels of luteinizing hormone in serum and pituitary gonadotropin subunit mRNAs were evaluated and displayed cyclic fluctuations similar to those reported previously. Pacap mRNA expression in the PVN and pituitary varied significantly during the estrous cycle, with the greatest changes occurring on the day of proestrus. Pacap mRNA levels in the PVN declined significantly on the morning of diestrus. During proestrus, PVN Pacap mRNA levels significantly increased 3 h before the gonadotropin surge and then declined. Pituitary expression of Pacap mRNA also varied on the afternoon of proestrus with a moderate decline at the time of the gonadotropin surge and a significant increase later in the evening. Expression of the mRNA species encoding the 288 amino acid form of follistatin increased significantly following the rise in pituitary Pacap mRNA, at the termination of the secondary surge in follicle-stimulating hormone beta (Fshb) gene expression. These results suggest that PACAP is involved in events before and following the gonadotropin surge, perhaps through increased gonadotroph sensitivity to GnRH and suppression of Fshb subunit expression through increased follistatin, as previously observed in vitro.  相似文献   

15.
Intraventricular injection of 5-hydroxytryptamine (5-HT) into female rats at 11:00 h on the day of proestrus inhibited the preovulatory surge of luteinizing hormone (LH) and ovulation. A similar response was observed after the activation of the serotonergic system by stimulation of the median raphe nucleus. A diurnal rhythm of these responses was observed. In rats acclimated to a 14-h:10-h light:dark cycle the potency of 5-HT to inhibit the LH surge and ovulation was 2.06 and 2.3 times greater, respectively, when injected at 11:00 h than at 13:00 h. Also stimulation of the median raphe nucleus at 11:00 h was significantly more effective in inhibiting these parameters than stimulation at 13:00 h. Similarly, the ability of gamma-amino-butyric acid (GABA) to inhibit the preovulatory LH surge and ovulation was greater in rats injected in the morning than in the afternoon. The results of this study indicate that during proestrus the sensitivity of 5-HT and GABA to induce inhibition of preovulatory LH release and ovulation shows daily variations with maximal effect before the critical period.  相似文献   

16.
The purpose of this investigation was to determine (1) the approximate time of the preovulatory LH rise in cyclic deermice, (2) the effect of indomethacin administration on plasma LH levels during the expected preovulatory LH rise, and (3) the effect of indomethacin administration on plasma LH levels in castrated male deermice. The data indicate that the preovulatory LH rise occurred at about 2200 h on proestrus and that indomethacin pretreatment significantly reduced plasma LH levels during that time. In addition, indomethacin significantly reduced plasma LH levels in castrated male deermice. We conclude that plasma LH levels remain low throughout the estrous cycle with the exception of the preovulatory “surge”, that plasma LH levels in deermice are comparable to those reported for the rat, and that indomethacin pretreatment reduced plasma LH levels during periods when they were expected to be elevated (in castrated males and during the expected preovulatory LH rise in female deermice). The data are consistent with the hypothesis that the effect of indomethacin on plasma LH levels is due to an inhibitory effect on hypothalamic PG biosynthesis.  相似文献   

17.
Luteinizing hormone requirements for ovulation induction were studied in proestrous rats through detailed observation of the preovulatory surge, through various forms of LH injection under sodium pentobarbital blockade, and through estimation of LH uptake by the ovary. Blood LH levels in individual proestrous rats were obtained every 30 min and grouped according to their peak time (designated 0 h); mean LH levels higher than 7 and 5 ng/ml continued for 30 min and 2.5 h, respectively, the pituitary LH contents at 1400 and 2000 h on the day of proestrus were 2.1 and 0.7 micrograms, respectively, indicating that the amount of LH secreted during the surge was at least 1.4 micrograms. Single intravenous injections of 2 micrograms and 1 micrograms of pure rat LH (NIDDK-rLH-I-7; FSH and prolactin contaminations: 0.02% and less than 0.01%, respectively) to sodium pentobarbital-blocked rats induced ovulation in 4 out of 4 rats and 4 out of 6 rats, respectively, while 500 ng failed to induce ovulation in any (out of 7) rats. Two injections of 300 ng each with an interval of 20 min induced ovulation in 3 out of 8 rats, but if the interval was prolonged to between 30 and 120 min, 100% ovulation was obtained. Blood LH levels in these experiments indicated that a lower long-lasting LH level (about 5 ng/ml blood) is more important than a short, high level for ovulation induction. It was also shown that this level of LH could be given in separate doses if the interval was 30-120 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

19.
T A Kellom  J L O'Conner 《Steroids》1991,56(5):284-290
The effects of luteinizing hormone releasing hormone (LHRH) pulse amplitude, duration, and frequency on divergent gonadotropin secretion were examined using superfused anterior pituitary cells from selected stages of the rat estrous cycle. Cells were stimulated with one of five LHRH regimens. With low-amplitude LHRH pulses (regimen 1) in the presence of potentially estrogenic phenol red, LH response in pituitary cells from proestrus 1900, estrus 0800, and diestrus 1,0800 were all significantly larger (P less than 0.05) than the other stages tested. In the absence of phenol red, responsiveness at proestrus 1900 was significantly larger than proestrus 0800, proestrus 1500, and estrus 0800 (P less than 0.01, 0.05, and 0.05, respectively); other cycle stages tested were smaller. No significant differences were observed between cycle stages for follicle-stimulating hormone (FSH) secretion in the presence or absence of phenol red. Because pituitary cells at proestrus 1900 were the most responsive to low-amplitude 4 ng LHRH pulses, they were also used to study the effects of LHRH pulses of increased amplitude or duration and decreased frequency. Increasing the amplitude (regimen 2) or the duration (regimens 3 to 5) increased FSH secretion; this effect was greatest with regimens 3 and 5. When regimens 3 and 5 were studied in pituitary cells obtained at proestrus 1500, FSH was significantly increased by both regimes, but most by regimen 5; furthermore, LH release was significantly reduced. When regimens 3 and 5 were studied in pituitary cells obtained at estrus 0800, FSH release was elevated most significantly by regimen 5. Thus, variations in LHRH pulse regimen were found to be capable of inducing significant divergence in FSH release from superfused anterior pituitary cells derived from specific stages of the estrous cycle.  相似文献   

20.
The hormonal interactions required for the generation of a secondary surge of FSH on the evening of proestrus have not been clearly defined. The role of GnRH in driving a surge of FSH has been questioned by findings in previous studies. In the current study, gonadotropin secretion was measured from pituitary fragments obtained from rats at 0900 and 2400 h on each day of the estrous cycle. Pituitary fragments were perifused in basal (unstimulated) conditions or in the presence of GnRH pulses to determine whether a selective increase in basal release of FSH and/or an increase in the responsiveness to GnRH occurs during the secondary FSH surge. Each anterior pituitary was cut into eighths and placed into a microchamber for perifusion. Seven pulses of GnRH (peak amplitude = 50 ng/ml; duration = approximately 2 min) were administered at a rate of one per hour starting at 30 min. Fractions of perfusate were collected every 5 min and frozen until RIA for LH and FSH. The mean total amount of LH or FSH secreted during the hour interval following each of the last six pulses of GnRH (or the corresponding basal hour) was calculated. Analysis of variance with repeated measures indicated that the evening secretion of LH on proestrus (2400 h) dropped significantly (p less than 0.05) from a maximum on the morning of proestrus (0900 h), whereas the FSH secretion remained elevated at this time. Therefore, the ratio of FSH to LH secreted in response to GnRH pulses was highest during the secondary FSH surge and lowest on the morning of proestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号