首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Backbone dynamics of the camphor monoxygenase cytochrome P450(cam) (CYP101) as a function of oxidation/ligation state of the heme iron were investigated via hydrogen/deuterium exchange (H/D exchange) as monitored by mass spectrometry. Main chain amide NH hydrogens can exchange readily with solvent and the rate of this exchange depends upon, among other things, dynamic fluctuations in local structural elements. A fluxional region of the polypeptide will exchange more quickly with solvent than one that is more constrained. In most regions of the enzyme, exchange rates were similar between oxidized high-spin camphor-bound and reduced camphor- and CO-bound CYP101 (CYP-S and CYP-S-CO, respectively). However, in regions of the protein that have previously been implicated in substrate access by structural and molecular dynamics investigations, the reduced enzyme shows significantly slower exchange rates than the oxidized CYP-S. This observation corresponds to increased flexibility of the oxidized enzyme relative to the reduced form. Structural features previously found to be perturbed in CYP-S-CO upon binding of the biologically relevant effector and reductant putidaredoxin (Pdx) as determined by nuclear magnetic resonance are also more protected from exchange in the reduced state. To our knowledge, this study represents the first experimental investigation of backbone dynamics within the P450 family using this methodology.  相似文献   

3.
4.
1. Cytochrome c was isolated from horse heart by a chromatographic method. 2. Oxidized and reduced cytochrome c were chromatographed on CM-cellulose that was in equilibrium with several buffer systems of constant composition at pH values of 8.4, 6.75 and 4.9. 3. Separation was better at the higher pH values; the oxidized form was retarded more than twice as much as the reduced form, though they differed by only a single charge. 4. Self-competition between cytochrome molecules is suggested to account for the peak distortion observed at high loads (above 20mum protein concentration).  相似文献   

5.
1. Kinetic studies have been performed with beef-heart cytochrome c oxidase, with the enzyme either in its oxidized, resting state or pretreated anaerobically with different amounts of reduced cytochrome c. The techniques used for the study have been stopped-flow spectrophotometry and electron paramagnetic resonance (EPR) spectroscopy. 2. The results show that the one-electron equivalent-reduced enzyme rapidly oxidizes one further equivalent of aerobically or anaerobically added ferrocytochrome c, with a rate constant of 5 . 10(6) M-1 . s-1. 3. When an excess of ferrocytochrome c in the presence of oxygen is added to the one-electron-reduced enzyme, the same turnover rate is obtained as in experiments with the resting enzyme. 4. The one-electron equivalent-enzyme reacts with CO with a rate constant of 4 . 10(4) M-1 . s-1 to yield approx. 35% of the CO compound as compared with the reaction between the fully reduced enzyme and CO. 5. It is shown that on reduction the enzyme is converted into an active form, but it is concluded that the enzyme does not have to be fully reduced before it is catalytically active.  相似文献   

6.
The sub‐nanosecond structural dynamics of reduced and oxidized cytochrome c were characterized. Dynamic properties of the protein backbone measured by amide 15N relaxation and side chains measured by the deuterium relaxation of methyl groups change little upon change in the redox state. These results imply that the solvent reorganization energy associated with electron transfer is small, consistent with previous theoretical analyses. The relative rigidity of both redox states also implies that dynamic relief of destructive electron transfer pathway interference is not operational in free cytochrome c.  相似文献   

7.
P Chin  S S Brody 《Biochemistry》1975,14(6):1190-1193
The surface properties of monomolecular films of oxidized and reduced cytochromes f and c were measured at an air-water interface. Area/molecular (A) and surface potential (deltaV) for oxidized and reduced forms of the cytochromes were measured as a function of pH. Oxidized cyt f has a maximum for both A and deltaV at pH 7.5. At a surface pressure of 6 dyn/cm the maximum A equals 2600 plus or minus 50 A2 and the maximum deltaV equals 200 plus or minus 10 mV. Reduced cyt f as a function of pH has a minimum value for both A (2200 A2) and deltaV (95 mV). Oxidized cyt c as a function of pH has minima for A (140 A2) and deltaV (188 mV) at pH 7.0 and 7.3, respectively. On the other hand, reduced cyt has maximum values for A (220 A2) and deltaV (260 mV) at pH 7.0 and 7.3, respectively.  相似文献   

8.
We have used two-dimensional infrared correlation spectroscopy (2D-IR) to study the interaction and conformation of cytochrome c in the presence of a binary phospholipid mixture composed of a zwitterionic perdeuterated phospholipid and a negatively-charged one. The influence of the main temperature phase transition of the phospholipid model membranes on the conformation of cytochrome c has been evaluated by monitoring both the Amide I' band of the protein and the CH(2) and CD(2) stretching bands of the phospholipids. Synchronous 2D-IR analysis has been used to determine the different secondary structure components of cytochrome c which are involved in the specific interaction with the phospholipids, revealing the existence of a specific interaction between the protein with cardiolipin-containing vesicles but not with phosphatidic acid-containing ones. Interestingly, 2D-IR is capable of showing the existence of significant changes in the protein conformation at the same time that the phospholipid transition occurs. In summary, 2D-IR revealed an important effect of the phospholipid phase transition of cardiolipin on the secondary structure of oxidized cytochrome c but not to either reduced cytochrome c or in the presence of phosphatidic acid, demonstrating the existence of specific intermolecular interactions between cardiolipin and cytochrome c.  相似文献   

9.
Potentiometric titration curves of oxidized and reduced horse heart cytochrome c in 0.15M KCl at 20°C have been obtained by timed titration (0.125–0.500 μmol/sec) from the isoionic points (pH 10.2–10.4) to pH 3 and back to the isoionic point. Computer-assisted (PROPHET) data acquisition and blank corrections give curves with good precision with a maximum standard deviation of 0.3 groups for an average error of 1%. The potentiometric titration curve of reduced cytochrome c is reversible within the precision of the method and for the pH range studied. The potentiometric curves for oxidized cytochrome c titrated upscale (pH 3–10) and downscale (pH 10–3) are not reversible. However, they show the same ionization behavior after the initial downscale titration. This is probably the result of a conformational change. Comparison of the data herein reported with the titration curves of oxidized cytochrome c already published by others indicates good agreement on the basis of a normalization of the concentration of protein or on the basis of 25 titrable groups between the acid end point and the isoionic pH. Titration of the 2 μmol imidazole in the upscale or downscale direction gives the correct analytical concentration and pK′ after correction for the solvent titration. Titration of reduced cytochrome c in the presence and absence of an additional equivalent of imidazole gave a difference titration curve, which indicates that a group on the protein shifts from pK′ 5.8 to pK′ 5.3 in the presence of imidazole. The pK′ of imidazole, in the presence of the protein, remains at a nearly normal value of 7.34.  相似文献   

10.
11.
The solution structure via 1H NMR of the fully reduced form of cytochrome c7 has been obtained. The protein sample was kept reduced by addition of catalytic amounts of Desulfovibrio gigas iron hydrogenase in H2 atmosphere after it had been checked that the presence of the hydrogenase did not affect the NMR spectrum. A final family of 35 conformers with rmsd values with respect to the mean structure of 8.7 +/- 1.5 nm and 12.4 +/- 1.3 nm for the backbone and heavy atoms, respectively, was obtained. A highly disordered loop involving residues 54-61 is present. If this loop is ignored, the rmsd values are 6.2 +/- 1.1 nm and 10.2 +/- 1.0 nm for the backbone and heavy atoms, respectively, which represent a reasonable resolution. The structure was analyzed and compared with the already available structure of the fully oxidized protein. Within the indetermination of the two solution structures, the result for the two redox forms is quite similar, confirming the special structural features of the three-heme cluster. A useful comparison can be made with the available crystal structures of cytochromes c3, which appear to be highly homologous except for the presence of a further heme. Finally, an analysis of the factors affecting the reduction potentials of the heme irons was performed, revealing the importance of net charges in differentiating the reduction potential when the other parameters are kept constant.  相似文献   

12.
Proton NMR spectroscopy was used to determine the rate constant, kobs, for exchange of labile protons in both oxidized (Fe(III)) and reduced (Fe(II)) iso-1-cytochrome c. We find that slowly exchanging backbone amide protons tend to lack solvent-accessible surface area, possess backbone hydrogen bonds, and are present in regions of regular secondary structure as well as in omega-loops. Furthermore, there is no correlation between kobs and the distance from a backbone amide nitrogen to the nearest solvent-accessible atom. These observations are consistent with the local unfolding model. Comparisons of the free energy change for denaturation, delta Gd, at 298 K to the free energy change for local unfolding, delta Gop, at 298 K for the oxidized protein suggest that certain conformations possessing higher free energy than the denatured state are detected at equilibrium. Reduction of the protein results in a general increase in delta Gop. Comparisons of delta Gd to delta Gop for the reduced protein show that the most open states of the reduced protein possess more structure than its chemically denatured form. This persistent structure in high-energy conformations of the reduced form appears to involve the axially coordinated heme.  相似文献   

13.
The reaction between ferric Pseudomonas cytochrome c peroxidase and reduced azurin was investigated by static titration, rapid scan, and stopped flow techniques as well as circular dichroism measurements. Kinetics of the reduction of the enzyme under pseudo-first order conditions reveals a biphasic logarithmic curve indicating that the reaction between enzyme and azurin is complex and comprises of two reactions, one rapid and a slower one. The relative portion of the fast phase from the overall reaction increases with increasing azurin concentration. Kinetic results can be explained by postulating the presence of two different enzyme forms which are slowly interconvertible. Both enzymatic forms form a complex with reduced azurin. The electron transfer between proteins occurs within the molecular complex of azurin and the peroxidase.  相似文献   

14.
The optimized g-tensor parameters for the oxidized form of Rhodobacter capsulatus cytochrome c2 in solution were obtained using a set (50) of backbone amide protons. Dipolar shifts for more than 500 individual protons of R. capsulatus cytochrome c2 have been calculated by using the optimized g-tensor and the X-ray crystallographic coordinates of the reduced form of R. capsulatus cytochrome c2. The calculated results for dipolar shifts are compared with the observed paramagnetic shifts. The calculated and the observed data are in good agreement throughout the entire protein, but there are significant differences between calculated and experimental results localized to the regions in the immediate vicinity of the heme ligand and the region of the front crevice of the protein (residues 44-50, 53-57, and 61-68). The results not only indicate that the overall solution structures are very similar in both the reduced and oxidized states, but that these structures in solution are similar to the crystal structure. However, there are small structural changes near the heme and the rearrangement of certain residues that result in changes in their hydrogen bonding concomitant with the change in the oxidation states; this was also evident in the data for the NH exchange rate measurements for R. capsulatus cytochrome c2.  相似文献   

15.
The binding constants of ferri- and ferrocytochrome c interactions with phosphatidylcholine or cardiolipin-containing vesicules were determined. It was found that affinity of ferricytochrome c to phospholipids is one order of magnitude higher that of ferrocytochrome c. A comparative investigation of circular dichroism spectra of free and phospholipid-bound ferri- and ferrocytochrome c was undertaken and it was shown that alpha-helix content of free ferrocytochrome c is higher than that of ferricytochrome c. The formation of ferricytochrome c containing lipoprotein complex led to decrease of alpha-helix content of the protein. In the case of ferrocytochrome c on the other hand interaction with phospholipids did not cause any changes in alpha-helix content. Distribution of ferri- and ferrocytochrome c in different two-phase systems consisting of dextran and polyethylenglycol or dextran and polyethylenglvcol-palmitate was also studied. A comparison of distribution constants shows that higher alpha-helix content of ferrocytochrome c results in the formation of hydrophobic clusters in the protein molecules. In previous communications it was reported that binding of ferrocytochrome c to phospholipids is determined by hydrophobic interactions while in the case of ferricytochrome c the interactions with phospholipids are mainly electrostatic. On the basis of the results obtained in this work it is supposed that it is hydrophobic clusters which determine the binding of ferrocytochrome c to phospholipid membranes.  相似文献   

16.
Modeling studies suggest that electrons are transferred from cytochrome c to cytochrome c peroxidase (CcP) with cytochrome c predominantly bound at a site facing the gamma-meso edge of the CcP prosthetic heme group (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330). As shown here, guaiacol and ferrocyanide are oxidized at a different site of CcP. Thus, the oxidations of cytochrome c and guaiacol are differentially inactivated by phenylhydrazine and sodium azide. The loss of guaiacol oxidation activity correlates with covalent binding of 1 equivalent of [14C]phenylhydrazine to the protein, whereas the slower loss of cytochrome c activity correlates with the appearance of a 428-nm absorbance maximum attributed to the formation of a sigma-phenyl-iron heme complex. The delta-meso-phenyl and 8-hydroxymethyl derivatives of heme are formed as minor products. Catalytic oxidation of azide to the azidyl radical results in inactivation of CcP and formation of delta-meso-azidoheme. Reconstitution of apo-CcP with delta-meso-azido-, -ethyl-, and -(2-phenylethyl)heme yields holoproteins that give compound I species with H2O2 and exhibit 80, 59, and 31%, respectively, of the control kcat value for cytochrome c oxidation but little or no guaiacol or ferrocyanide oxidizing activity. Conversely, CcP reconstituted with gamma-meso-ethylheme is fully active in the oxidation of guaiacol and ferrocyanide but only retains 27% of the cytochrome c oxidizing activity. These results indicate that guaiacol and ferrocyanide are primarily oxidized near the delta-meso-heme edge rather than, like cytochrome c, at a surface site facing the gamma-meso edge.  相似文献   

17.
A 5-ns molecular dynamics study of a tetraheme cytochrome in fully oxidized and reduced forms was performed using the CHARMM molecular modeling program, with explicit water molecules, Langevin dynamics thermalization, Particle Mesh Ewald long-range electrostatics, and quantum mechanical determination of heme partial charges. The simulations used, as starting points, crystallographic structures of the oxidized and reduced forms of the acidic cytochrome c(3) from Desulfovibrio africanus obtained at pH 5.6. In this paper we also report structures for the two forms obtained at pH 8. In contrast to previous cytochrome c(3) dynamics simulations, our model is stable. The simulation structures agree reasonably well with the crystallographic ones, but our models show higher flexibility and the water molecules are more labile. We have compared in detail the differences between the simulated and experimental structures of the two redox states and observe that the hydration structure is highly dependent on the redox state. We have also analyzed the interaction energy terms between the hemes, the protein residues, and water. The direct electrostatic interaction between hemes is weak and nearly insensitive to the redox state, but the remaining terms are large and contribute in a complex way to the overall potential energy differences that we see between the redox states.  相似文献   

18.
The heats of ionization of protons, ΔHi, of oxidized and reduced horse heart cytochrome c in 0.15M KCl at 20°C were determined using a titration calorimeter which simultaneously afforded the potentiometric titration curve. Reproducibility of the thermal titrations is within 2%, and evaluation of the heats observed after the heat loss corrections is estimated to be within 5%. A single titration of oxidized cytochrome c from pH 11 to 3 is in excellent agreement with the thermal titration of this protein obtained with flow calorimetry. The thermal titration, however, is not reversible, due in part to the loss of titratable group(s) in this pH region and to the heat contribution of the acid and alkaline conformational changes which occur. Although of lesser magnitude, the reduced form also indicates similar thermal transitions. These differences are due solely to conformational contributions to the thermal process, since the potentiometric curves are reversible. The nature of the irreversibility for oxidized cytochrome c appears to involve the loss of a group with pK′ 8.9 and the shift of two groups from pK′ 5.6 to 4.8. Thermal difference curves for this process indicate that heats of ?7.8 and ?24.1 kcal/mol are liberated which are centered at pH 9.3 and 3.9, respectively.  相似文献   

19.
Cytochrome c554 (cyt c554) is a tetra-heme cytochrome involved in the oxidation of NH3 by Nitrosomonas europaea. The X-ray crystal structures of both the oxidized and dithionite-reduced states of cyt c554 in a new, rhombohedral crystal form have been solved by molecular replacement, at 1.6 A and 1.8 A resolution, respectively. Upon reduction, the conformation of the polypeptide chain changes between residues 175 and 179, which are adjacent to hemes III and IV. Cyt c554 displays conserved heme-packing motifs that are present in other heme-containing proteins. Comparisons to hydroxylamine oxidoreductase, the electron donor to cyt c554, and cytochrome c nitrite reductase, an enzyme involved in nitrite ammonification, reveal substantial structural similarity in the polypeptide chain surrounding the heme core environment. The structural determinants of these heme-packing motifs extend to the buried water molecules that hydrogen bond to the histidine ligands to the heme iron. In the original structure determination of a tetragonal crystal form, a cis peptide bond between His129 and Phe130 was identified that appeared to be stabilized by crystal contacts. In the rhombohedral crystal form used in the present high-resolution structure determination, this peptide bond adopts the trans conformation, but with disallowed angles of phi and psi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号